The geometric and biomechanical properties of the larynx strongly influence voice quality and efficiency. A physical understanding of phonation natures in pathological conditions is important for predictions of how vo...The geometric and biomechanical properties of the larynx strongly influence voice quality and efficiency. A physical understanding of phonation natures in pathological conditions is important for predictions of how voice disorders can be treated using therapy and rehabilitation. Here, we present a continuum-based numerical model of phonation that considers complex fluid-structure interactions occurring in the airway. This model considers a three-dimensional geometry of vocal folds, muscle contractions, and viscoelastic properties to provide a realistic framework of phonation. The vocal fold motion is coupled to an unsteady compressible respiratory flow, allowing numerical simulations of normal and diseased phonations to derive clear relationships between actual laryngeal structures and model parameters such as muscle activity. As a pilot analysis of diseased phonation, we model vocal nodules, the mass lesions that can appear bilaterally on both sides of the vocal folds. Comparison of simulations with and without the nodules demonstrates how the lesions affect vocal fold motion, consequently restricting voice quality. Furthermore, we found that the minimum lung pressure required for voice production increases as nodules move closer to the center of the vocal fold. Thus, simulations using the developed model may provide essential insight into complex phonation phenomena and further elucidate the etiologic mechanisms of voice disorders.展开更多
The concave-eared torrent frog(Odorrana tormota) is the first species of tailless amphibian that was evidenced to phonate and detect ultrasounds. We employed anatomic and histological methods to examine the phonatory ...The concave-eared torrent frog(Odorrana tormota) is the first species of tailless amphibian that was evidenced to phonate and detect ultrasounds. We employed anatomic and histological methods to examine the phonatory organs, including the floor of the buccal cavity, vocal cords and glottis, of O. tormota and its sympatric species including O. graminea, O. schmackeri, and Amolops wuyiensis with different fundamental frequencies, and Pelophylax nigromaculatus as a control. Our results reveal that O. tormota possesses specialized phonatory organ structures, with thinner vocal cords modulated by a moderately stronger muscular mastoideus between the medial vocal cords and the lateral cricoid cartilages, and more elastic mouth floor to likely supply faster air stream which could make the vocal cords vibrate at higher frequencies, larger relative distance between the two muscles m. intermandibulares(RDMI), and higher nucleus density of m. intermandibularis(NDMI) and m. geniohyoideus(NDMG). The results of Pearson’s correlation tests between the mean values of the above measurements and the fundamental frequencies from the five species imply that all the specialized phonatory organ structures mentioned above might be favored by higher frequency of phonation of O. tormota.展开更多
In this study,we report on a patient who showed weak phonation following mild traumatic brain injury(TBI),which was demonstrated by diffusion tensor tractography(DTT).
文摘The geometric and biomechanical properties of the larynx strongly influence voice quality and efficiency. A physical understanding of phonation natures in pathological conditions is important for predictions of how voice disorders can be treated using therapy and rehabilitation. Here, we present a continuum-based numerical model of phonation that considers complex fluid-structure interactions occurring in the airway. This model considers a three-dimensional geometry of vocal folds, muscle contractions, and viscoelastic properties to provide a realistic framework of phonation. The vocal fold motion is coupled to an unsteady compressible respiratory flow, allowing numerical simulations of normal and diseased phonations to derive clear relationships between actual laryngeal structures and model parameters such as muscle activity. As a pilot analysis of diseased phonation, we model vocal nodules, the mass lesions that can appear bilaterally on both sides of the vocal folds. Comparison of simulations with and without the nodules demonstrates how the lesions affect vocal fold motion, consequently restricting voice quality. Furthermore, we found that the minimum lung pressure required for voice production increases as nodules move closer to the center of the vocal fold. Thus, simulations using the developed model may provide essential insight into complex phonation phenomena and further elucidate the etiologic mechanisms of voice disorders.
基金funded by the National Natural Science Foundation of China(NSFC 3073002931071906)+1 种基金the Main Direction Program of the Knowledge Innovation of Chinese Academy of Sciences(KSCX2-YW-Z-0905KSCX2-EW-J-22)
文摘The concave-eared torrent frog(Odorrana tormota) is the first species of tailless amphibian that was evidenced to phonate and detect ultrasounds. We employed anatomic and histological methods to examine the phonatory organs, including the floor of the buccal cavity, vocal cords and glottis, of O. tormota and its sympatric species including O. graminea, O. schmackeri, and Amolops wuyiensis with different fundamental frequencies, and Pelophylax nigromaculatus as a control. Our results reveal that O. tormota possesses specialized phonatory organ structures, with thinner vocal cords modulated by a moderately stronger muscular mastoideus between the medial vocal cords and the lateral cricoid cartilages, and more elastic mouth floor to likely supply faster air stream which could make the vocal cords vibrate at higher frequencies, larger relative distance between the two muscles m. intermandibulares(RDMI), and higher nucleus density of m. intermandibularis(NDMI) and m. geniohyoideus(NDMG). The results of Pearson’s correlation tests between the mean values of the above measurements and the fundamental frequencies from the five species imply that all the specialized phonatory organ structures mentioned above might be favored by higher frequency of phonation of O. tormota.
基金supported by the Medical Research Center Program(2015R1A5A2009124)through the National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT and Future Planning
文摘In this study,we report on a patient who showed weak phonation following mild traumatic brain injury(TBI),which was demonstrated by diffusion tensor tractography(DTT).