The grain refinement of superalloy IN718 under the action of low voltage pulsed magnetic field was investigated. The experimental results show that fine equiaxed grains are acquired under the action of low voltage pul...The grain refinement of superalloy IN718 under the action of low voltage pulsed magnetic field was investigated. The experimental results show that fine equiaxed grains are acquired under the action of low voltage pulsed magnetic field. The refinement effect of the pulsed magnetic field is affected by the melt cooling rate and superheating. The decrease of cooling rate and superheating enhance the refinement effect of the low voltage pulsed magnetic field. The magnetic force and the melt flow during solidification are modeled and simulated to reveal the grain refinement mechanism. It is considered that the melt convection caused by the pulsed magnetic field, as well as cooling rate and superheating contributes to the refinement of solidified grains.展开更多
The optical microscopy and scanning electron microscopy as well as energy dispersive spectroscopy were employed to investigate the influence of joint addition of Sc and Zr on grain refinement of Al-Zn-Mg-Cu alloys. Re...The optical microscopy and scanning electron microscopy as well as energy dispersive spectroscopy were employed to investigate the influence of joint addition of Sc and Zr on grain refinement of Al-Zn-Mg-Cu alloys. Results show that the addition of 0.20% Sc has a little effect on grain refinement because Sc is mainly dissolved into the matrix and hardly any primary Al3Sc particles are precipitated. The alloy with addition of 0.30% Sc and 0.16% Zr has more equiaxed grains than that of others,giving cast grain sizes as fine as 13 μm. This is because the Sc substitutes for Al atom in the Al-Zr crystal cell and forms Al-Sc-Zr unit cell,which grows and becomes Al3(Scx,Zr1-x) particle,acting as a nucleus for the formation of α-Al. The addition of 0.04% Ti and 0.008% B makes the grain size drop from 250 μm to 50 μm. Its refinement effect is less than the 13 μm achieved by the alloy including 0.30% Sc and 0.16% Zr.展开更多
The fracture behavior of fully lamellar γ-TiAl alloys depends on the angle between the lamellar orientation and loading axis,but the role of the presentation of grain boundary cannot be ignored.To investigate the inf...The fracture behavior of fully lamellar γ-TiAl alloys depends on the angle between the lamellar orientation and loading axis,but the role of the presentation of grain boundary cannot be ignored.To investigate the influence of the grain boundary on the initiation and propagation of cracks,the tensile test of the alloy was conducted at room temperature with loading axis parallel and perpendicular to the lamellar orientation,respectively.The cracks adjacent to the fracture zone of the tensile specimens have been investigated to analyze the fracture behavior.Results show that the grain boundary has dual influences on the fracture behavior.When the loading axis is parallel to the lamellar orientation,cracks are preferentially initiated at and propagate along the grain boundaries.When the loading axis is perpendicular to the lamellar orientation,the grain boundaries can prevent the propagation of cracks from running across.Additionally,serrated-shape grain boundaries have a better inhibiting effect on the propagation of cracks than planar boundaries.展开更多
As the lightest structural metal,Mg and Mg-based alloys have great potential applications in the aerospace,automotive and nuclear industries.However,such applications have been limited by low ductility and strength.Th...As the lightest structural metal,Mg and Mg-based alloys have great potential applications in the aerospace,automotive and nuclear industries.However,such applications have been limited by low ductility and strength.Theoretically,small grain sized structure can synchronously improve its ductility and strength.Yet,universally reliable grain ref inement techniques for the magnesium alloys are still under investigation and some are in strong debating.This paper presents a brief review of development of grain ref inement methods for magnesium alloys,which would contribute to a better understanding of the factors controlling grain ref inement and provide an outlook of future research in this fi eld.展开更多
The effect of Hf on the grain refinement of as-cast aluminum was investigated using optical microscopy, electron microscopy and X-ray diffraction. The result shows that the grain size of studied alloy decreases effect...The effect of Hf on the grain refinement of as-cast aluminum was investigated using optical microscopy, electron microscopy and X-ray diffraction. The result shows that the grain size of studied alloy decreases effectively with the addition of Hf,Hf can react with Al to form Al3Hf particles during the solidification, the primary Al3Hf particles are highly potent nucleants for Al and the nanoscale coherent Al3Hf particles can inhibit the grain growth by pinning effect. The grain refinement mechanism of studied alloys was verified by the solute theory and the crystallography study, and it can be divided into two distinct types: At low Hf contents, there are no primary Al3Hf phases to form, the acquired grain refinement is primarily attributed to the constitutional undercooling induced by the Hf solute. At medium and high Hf contents, both Hf solute and Al3Hf particles contribute to the refinement.展开更多
Isothermal hot compression tests of as-cast high-Cr ultra-super-critical(USC) rotor steel with columnar grains perpendicular to the compression direction were carried out in the temperature range from 950 to 1250...Isothermal hot compression tests of as-cast high-Cr ultra-super-critical(USC) rotor steel with columnar grains perpendicular to the compression direction were carried out in the temperature range from 950 to 1250°C at strain rates ranging from 0.001 to 1 s^(-1). The softening mechanism was dynamic recovery(DRV) at 950°C and the strain rate of 1 s^(-1), whereas it was dynamic recrystallization(DRX) under the other conditions. A modified constitutive equation based on the Arrhenius model with strain compensation reasonably predicted the flow stress under various deformation conditions, and the activation energy was calculated to be 643.92 kJ ×mol^(-1). The critical stresses of dynamic recrystallization under different conditions were determined from the work-hardening rate(θ)–flow stress(σ) and-θ/σ–σ curves. The optimum processing parameters via analysis of the processing map and the softening mechanism were determined to be a deformation temperature range from 1100 to 1200°C and a strain-rate range from 0.001 to 0.08 s^(-1), with a power dissipation efficiency η greater than 31%.展开更多
The grain refinement of the as-cast AZ31 alloys by limestone particles was investigated by grain refining tests and microstructure observations. The results show that the limestone particles have a good grain refining...The grain refinement of the as-cast AZ31 alloys by limestone particles was investigated by grain refining tests and microstructure observations. The results show that the limestone particles have a good grain refining potency, which is deeply related to the addition level of limestone and melting temperature. The optimal addition level and melting temperature are 2.0%(mass fraction) and 720 ℃, respectively. The average grain size of AZ31 alloy is reduced from(556±60) to(236±22) μm. The sound grain refining by raw limestone particles has a good anti-fading capacity without any significant grain coarsening in a 40 min holding time. The concerned grain refining mechanism should be attributed to the inoculated Al-C and Al-C/Al-Mn-(Fe) nuclei. Ultrasonic treatment can enhance the grain refining efficiency of limestone particles through cavitation-enhanced nucleation mechanism.展开更多
The development of modern agriculture requires the reduction of water and chemical N fertilizer inputs.Increasing the planting density can maintain higher yields,but also consumes more of these restrictive resources.H...The development of modern agriculture requires the reduction of water and chemical N fertilizer inputs.Increasing the planting density can maintain higher yields,but also consumes more of these restrictive resources.However,whether an increased maize density can compensate for the negative effects of reduced water and N supply on grain yield and N uptake in the arid irrigated areas remains unknown.This study is part of a long-term positioning trial that started in 2016.A split-split plot field experiment of maize was implemented in the arid irrigated area of northwestern China in 2020 to 2021.The treatments included two irrigation levels:local conventional irrigation reduced by 20%(W1,3,240 m^(3)ha^(-1))and local conventional irrigation(W2,4,050 m^(3)ha^(-1));two N application rates:local conventional N reduced by 25%(N1,270 kg ha^(-1))and local conventional N(360 kg ha^(-1));and three planting densities:local conventional density(D1,75,000 plants ha^(-1)),density increased by 30%(D2,97,500 plants ha-1),and density increased by 60%(D3,120,000 plants ha^(-1)).Our results showed that the grain yield and aboveground N accumulation of maize were lower under the reduced water and N inputs,but increasing the maize density by 30% can compensate for the reductions of grain yield and aboveground N accumulation caused by the reduced water and N supply.When water was reduced while the N application rate remained unchanged,increasing the planting density by 30% enhanced grain yield by 13.9% and aboveground N accumulation by 15.3%.Under reduced water and N inputs,increasing the maize density by 30% enhanced N uptake efficiency and N partial factor productivity,and it also compensated for the N harvest index and N metabolic related enzyme activities.Compared with W2N2D1,the N uptake efficiency and N partial factor productivity increased by 28.6 and 17.6%under W1N1D2.W1N2D2 had 8.4% higher N uptake efficiency and 13.9% higher N partial factor productivity than W2N2D1.W1N2D2 improved urease activity and nitrate reductase activity by 5.4% at the R2(blister)stage and 19.6% at the V6(6th leaf)stage,and increased net income and the benefit:cost ratio by 22.1 and 16.7%,respectively.W1N1D2 and W1N2D2 reduced the nitrate nitrogen and ammoniacal nitrogen contents at the R6 stage in the 40-100 cm soil layer,compared with W2N2D1.In summary,increasing the planting density by 30% can compensate for the loss of grain yield and aboveground N accumulation under reduced water and N inputs.Meanwhile,increasing the maize density by 30% improved grain yield and aboveground N accumulation when water was reduced by 20% while the N application rate remained constant in arid irrigation areas.展开更多
Recently developed ‘super’ rice cultivars with greater yield potentials often suffer from the problem of poor grain filling, especially in inferior spikelets. Here, we studied the activities of enzymes related to st...Recently developed ‘super’ rice cultivars with greater yield potentials often suffer from the problem of poor grain filling, especially in inferior spikelets. Here, we studied the activities of enzymes related to starch metabolism in rice stems and grains, and the microstructures related to carbohydrate accumulation and transportation to investigate the effects of different water regimes on grain filling. Two ‘super’ rice cultivars were grown under two irrigation regimes of well-watered(WW) and alternate wetting and moderate soil drying(AWMD). Compared with the WW treatment,the activities of ADP glucose pyrophosphorylase(AGPase), starch synthase(StSase) and starch branching enzyme(SBE), and the accumulation of non-structural carbohydrates(NSCs) in the stems before heading were significantly improved, and more starch granules were stored in the stems in the AWMD treatment. After heading, the activities of α-amylase, β-amylase, sucrose phosphate synthase(SPS) and sucrose synthase in the synthetic direction(SSs)were increased in the stems to promote the remobilization of NSCs for grain filling under AWMD. During grain filling, the enzymatic activities of sucrose synthase in the cleavage direction(SSc), AGPase, StSase and SBE in the inferior spikelets were increased, which promoted grain filling, especially for the inferior spikelets under AWMD.However, there were no significant differences in vascular microstructures. The grain yield and grain weight could be improved by 13.1 and 7.5%, respectively, by optimizing of the irrigation regime. We concluded that the low activities of key enzymes in carbon metabolism is the key limitation for the poor grain filling, as opposed to the vascular microstructures, and AWMD can increase the amount of NSC accumulation in the stems before heading, improve the utilization rate of NSCs after heading, and increase the grain filling, especially in the inferior spikelets, by altering the activities of key enzymes in carbon metabolism.展开更多
The size and shape of rice grains influence their yield and commercial value.We investigated the role of OsDA1,a rice homolog of the Arabidopsis DA1 gene,in regulating grain size and shape.OsDA1 was highly expressed i...The size and shape of rice grains influence their yield and commercial value.We investigated the role of OsDA1,a rice homolog of the Arabidopsis DA1 gene,in regulating grain size and shape.OsDA1 was highly expressed in young spikelets and glumes.Its overexpression led to enlarged seeds with increased width and decreased length/width ratio(LWR)and knocking out OsDA1 reduced grain width and increased grain length and LWR.A R310K point mutation in the DA1-like domain is a potential target for breeding for increased grain width and length.OsDA1 interacted with TCP gene-family proteins to regulate grain size and shape.Our findings deepen our understanding of the molecular mechanisms underlying grain size regulation and provide useful information for improving grain yield.展开更多
Grain size is a key factor influencing grain weight in rice.In this study,a chromosome segment substitution line(CSSL9-17)was identified,that exhibits a significant reduction in both grain size and weight compared to ...Grain size is a key factor influencing grain weight in rice.In this study,a chromosome segment substitution line(CSSL9-17)was identified,that exhibits a significant reduction in both grain size and weight compared to its donor parent 93-11.Further investigation identified two quantitative trait loci(QTL)on chromosome 11,designated qGW11a and qGW11b,which contribute to 1000-grain weight with an additive effect.LOC_Os11g05690,encoding the amino acid permease OsCAT8,is the target gene of qGW11a.Overexpression of OsCAT8 resulted in decreased grain weight,while OsCAT8 knockout mutants exhibited increased grain weight.The 287-bp located within the OsCAT8 promoter region of 93-11 negatively regulates its activity,which is subsequently correlated with an increase in grain size and weight.These results suggest that OsCAT8 functions as a negative regulator of grain size and grain weight in rice.展开更多
The superplastic behavior and associated deformation mechanisms of a fine-grained Mg-10.1 Li-0.8Al-0.6Zn alloy(LAZ1011)with a grain size of 3.2μm,primarily composed of the BCCβphase and a small amount of the HCPαph...The superplastic behavior and associated deformation mechanisms of a fine-grained Mg-10.1 Li-0.8Al-0.6Zn alloy(LAZ1011)with a grain size of 3.2μm,primarily composed of the BCCβphase and a small amount of the HCPαphase,were examined in a temperature range of 473 K to 623 K.The microstructural refinement of this alloy was achieved by employing high-ratio differential speed rolling.The best superplasticity was achieved at 523 K and at strain rates of 10^(-4)-5×10^(-4)s^(-1),where tensile elongations of 550±600%were obtained.During the heating and holding stage of the tensile samples prior to tensile loading,a significant increase in grain size was observed at temperatures above 573 K.Therefore,it was important to consider this effect when analyzing and understanding the superplastic deformation behavior and mechanisms.In the investigated strain rate range,the superplastic flow at low strain rates was governed by lattice diffusion-controlled grain boundary sliding,while at high strain rates,lattice diffusion-controlled dislocation climb creep was the rate-controlling deformation mechanism.It was concluded that solute drag creep is unlikely to occur.During the late stages of deformation at 523 K,it was observed that grain boundary sliding led to the agglomeration of theαphase,resulting in significant strain hardening.Deformation mechanism maps were constructed forβ-Mg-Li alloys in the form of 2D and 3D formats as a function of strain rate,stress,temperature,and grain size,using the constitutive equations for various deformation mechanisms derived based on the data of the current tests.展开更多
Increased nighttime respiratory losses decrease the amount of photoassimilates available for plant growth and yield. We hypothesized that the increased respiratory carbon loss under high night temperatures(HNT) could ...Increased nighttime respiratory losses decrease the amount of photoassimilates available for plant growth and yield. We hypothesized that the increased respiratory carbon loss under high night temperatures(HNT) could be compensated for by increased photosynthesis during the day following HNT exposure. Two rice genotypes, Vandana(HNT-sensitive) and Nagina 22(HNT-tolerant), were exposed to HNT(4 ℃ above the control) from flowering to physiological maturity. They were assessed for alterations in the carbon balance of the source(flag leaf) and its subsequent impact on grain filling dynamics and the quality of spatially differentiated sinks(superior and inferior spikelets). Both genotypes exhibited significantly higher night respiration rates. However, only Nagina 22 compensated for the high respiration rates with an increased photosynthetic rate, resulting in a steady production of total dry matter under HNT. Nagina 22 also recorded a higher grain-filling rate, particularly at 5 and 10 d after flowering, with 1.5- and 4.0-fold increases in the translocation of ^(14)C sugars to the superior and inferior spikelets, respectively. The ratio of photosynthetic rate to respiratory rate on a leaf area basis was negatively correlated with spikelet sterility, resulting in a higher filled spikelet number and grain weight per plant, particularly for inferior grains in Nagina 22. Grain quality parameters such as head rice recovery, high-density grains, and gelatinization temperature were maintained in Nagina 22. An increase in the rheological properties of rice flour starch in Nagina 22 under HNT indicated the stability of starch and its ability to reorganize during the cooling process of product formation. Thus, our study showed that sink adjustments between superior and inferior spikelets favored the growth of inferior spikelets, which helped to offset the reduction in grain weight under HNT in the tolerant genotype Nagina 22.展开更多
Ferritic/martensitic(F/M)steel is widely used as a structural material in thermal and nuclear power plants.However,it is susceptible to intergranular damage,which is a critical issue,under service conditions.In this s...Ferritic/martensitic(F/M)steel is widely used as a structural material in thermal and nuclear power plants.However,it is susceptible to intergranular damage,which is a critical issue,under service conditions.In this study,to improve the resistance to intergranular damage of F/M steel,a thermomechanical process(TMP)was employed to achieve a grain boundary engineering(GBE)microstructure in F/M steel P92.The TMP,including cold-rolling thickness reduction of 6%,9%,and 12%,followed by austenitization at 1323 K for 40 min and tempering at 1053 K for 45 min,was applied to the as-received(AR)P92 steel.The prior austenite grain(PAG)size,prior austenite grain boundary character distribution(GBCD),and connectivity of prior austenite grain boundaries(PAGBs)were investigated.Compared to the AR specimen,the PAG size did not change significantly.The fraction of coincident site lattice boundaries(CSLBs,3≤Σ≤29)and Σ3^(n) boundaries along PAGBs decreased with increasing reduction ratio because the recrystallization fraction increased with increasing reduction ratio.The PAGB connectivity of the 6%deformed specimen slightly deteriorated compared with that of the AR specimen.Moreover,potentiodynamic polarization studies revealed that the intergranular damage resistance of the studied steel could be improved by increasing the fraction of CSLBs along the PAGBs,indicating that the TMP,which involves low deformation,could enhance the intergranular damage resistance.展开更多
In a study comparing grain filling and yield in a large-and a small-grain-size wheat cultivar under two planting patterns and two irrigation regimes,plastic-covered ridge and furrow planting with sprinkler irrigation ...In a study comparing grain filling and yield in a large-and a small-grain-size wheat cultivar under two planting patterns and two irrigation regimes,plastic-covered ridge and furrow planting with sprinkler irrigation increased grain filling and yield in both cultivars.The largest contributors to grain yield were an extended active grain-filling period in Shuangda 1 and an increased mean grain-filling rate in XN538.展开更多
Increasing crop grain yields is an urgent global priority due to population growth,shrinking arable land,and severe climate change in recent years(Tang et al.2023).Unraveling the process of panicle development is cruc...Increasing crop grain yields is an urgent global priority due to population growth,shrinking arable land,and severe climate change in recent years(Tang et al.2023).Unraveling the process of panicle development is crucial for enhancing the grain yield of cereal crops.In the development of rice panicles,the inflorescence meristem(IM)gives rise to two types of lateral branch meristems(BMs):primary branch meristem(pBM)and secondary branch meristem(sBM).The pBM generates sBM and spikelet meristems(SMs),and the sBM further differentiates into more SMs(Zhang and Yuan 2014).展开更多
The grass spikelet is a unique inflorescence structure that determines grain size.Although many genetic factors have been well characterized for grain size and glume development,the underlying molecular mechanisms in ...The grass spikelet is a unique inflorescence structure that determines grain size.Although many genetic factors have been well characterized for grain size and glume development,the underlying molecular mechanisms in rice are far from established.Here,we isolated rice gene,AGL1 that controlled grain size and determines the fate of the sterile lemma.Loss of function of AGL1 produced larger grains and reduced the size of the sterile lemma.Larger grains in the agl1 mutant were caused by a larger number of cells that were longer and wider than in the wild type.The sterile lemma in the mutant spikelet was converted to a rudimentary glume-like organ.Our findings showed that the AGL1(also named LAX1)protein positively regulated G1 expression,and negatively regulated NSG1 expression,thereby affecting the fate of the sterile lemma.Taken together,our results revealed that AGL1 played a key role in negative regulation of grain size by controlling cell proliferation and expansion,and supported the opinion that rudimentary glume and sterile lemma in rice are homologous organs.展开更多
Increasing effective panicle number per plant(EPN)is one approach to increase yield potential in rice.However,molecular mechanisms underlying EPN remain unclear.In this study,we integrated mapbased cloning and genome-...Increasing effective panicle number per plant(EPN)is one approach to increase yield potential in rice.However,molecular mechanisms underlying EPN remain unclear.In this study,we integrated mapbased cloning and genome-wide association analysis to identify the EPN4 gene,which is allelic to NARROW LEAF1(NAL1).Overexpression lines containing the Teqing allele(TQ)of EPN4 had significantly increased EPN.NIL-EPN4^(TQ) in japonica(geng)cultivar Lemont(LT)exhibited significantly improved EPN but decreased grain number and flag leaf size relative to LT.Haplotype analysis indicated that accessions with EPN4-1 had medium EPN,medium grain number,and medium grain weight,but had the highest grain yield among seven haplotypes,indicating that EPN4-1 is an elite haplotype of EPN4 for positive coordination of the three components of grain yield.Furthermore,accessions carrying the combination of EPN4-1 and haplotype GNP1-6 of GNP1 for grain number per panicle showed higher grain yield than those with other allele combinations.Therefore,pyramiding of EPN4-1 and GNP1-6 could be a preferred approach to obtain high yield potential in breeding.展开更多
The clay–sand barriers in Minqin desert area,China,represent a pioneering windbreak and sand fixation project with a venerable history of 60 a.However,studies on evaluating the long-term effectiveness of clay–sand b...The clay–sand barriers in Minqin desert area,China,represent a pioneering windbreak and sand fixation project with a venerable history of 60 a.However,studies on evaluating the long-term effectiveness of clay–sand barriers against aeolian erosion,particularly from the perspective of surface sediment grain size,are limited and thus insufficient to ascertain the protective impact of these barriers on regional aeolian activities.This study focused on the surface sediments(topsoil of 0–3 cm depth)of clay–sand barriers in Minqin desert area to explain their erosion resistance from the perspective of surface sediment grain size.In March 2023,six clay–sand barrier sampling plots with clay–sand barriers of different deployment durations(1,5,10,20,40,and 60 a)were selected as experimental plots,and one control sampling plot was set in an adjacent mobile sandy area without sand barriers.Surface sediment samples were collected from the topsoil of each sampling plot in the study area in April 2023 and sediment grain size characteristics were analyzed.Results indicated a predominance of fine and medium sands in the surface sediments of the study area.The deployment of clay–sand barriers cultivated a fine quality in grain size composition of the regional surface sediments,increasing the average contents of very fine sand,silt,and clay by 30.82%,417.38%,and 381.52%,respectively.This trend became markedly pronounced a decade after the deployment of clay–sand barriers.The effectiveness of clay–sand barriers in erosion resistance was manifested through reduced wind velocity,the interception of sand flow,and the promotion of fine surface sediment particles.Coarser particles such as medium,coarse,and very coarse sands predominantly accumulated on the external side of the barriers,while finer particles such as fine and very fine sands concentrated in the upwind(northwest)region of the barriers.By contrast,the contents of finest particles such as silt and clay were higher in the downwind(southeast)region of the sampling plots.For the study area,the deployment of clay–sand barriers remains one of the most cost-effective engineering solutions for aeolian erosion control,with sediment grain size parameters serving as quantitative indicators for the assessment of these barriers in combating desertification.The results of this study provide a theoretical foundation for the construction of windbreak and sand fixation systems and the optimization of artificial sand control projects in arid desert areas.展开更多
基金Project(2010CB631205)supported by the National Basic Research Program of ChinaProject(51034012)supported by the National Natural Science Foundation of China
文摘The grain refinement of superalloy IN718 under the action of low voltage pulsed magnetic field was investigated. The experimental results show that fine equiaxed grains are acquired under the action of low voltage pulsed magnetic field. The refinement effect of the pulsed magnetic field is affected by the melt cooling rate and superheating. The decrease of cooling rate and superheating enhance the refinement effect of the low voltage pulsed magnetic field. The magnetic force and the melt flow during solidification are modeled and simulated to reveal the grain refinement mechanism. It is considered that the melt convection caused by the pulsed magnetic field, as well as cooling rate and superheating contributes to the refinement of solidified grains.
基金supported by the National Natural Science Foundation of China (No. 2005CB623706)
文摘The optical microscopy and scanning electron microscopy as well as energy dispersive spectroscopy were employed to investigate the influence of joint addition of Sc and Zr on grain refinement of Al-Zn-Mg-Cu alloys. Results show that the addition of 0.20% Sc has a little effect on grain refinement because Sc is mainly dissolved into the matrix and hardly any primary Al3Sc particles are precipitated. The alloy with addition of 0.30% Sc and 0.16% Zr has more equiaxed grains than that of others,giving cast grain sizes as fine as 13 μm. This is because the Sc substitutes for Al atom in the Al-Zr crystal cell and forms Al-Sc-Zr unit cell,which grows and becomes Al3(Scx,Zr1-x) particle,acting as a nucleus for the formation of α-Al. The addition of 0.04% Ti and 0.008% B makes the grain size drop from 250 μm to 50 μm. Its refinement effect is less than the 13 μm achieved by the alloy including 0.30% Sc and 0.16% Zr.
基金financially supported by the National Natural Science Foundation of China (50975060,50901025)the National Basic Research Program of China (2011CB610406)+2 种基金the China Postdoctoral Science Foundation (201104420,20090450840)the Fundamental Research Funds for the Central Universities (HIT.BRET1.2010008)the Scientific and Technological Project in Heilongjiang Province (GZ09A206)
文摘The fracture behavior of fully lamellar γ-TiAl alloys depends on the angle between the lamellar orientation and loading axis,but the role of the presentation of grain boundary cannot be ignored.To investigate the influence of the grain boundary on the initiation and propagation of cracks,the tensile test of the alloy was conducted at room temperature with loading axis parallel and perpendicular to the lamellar orientation,respectively.The cracks adjacent to the fracture zone of the tensile specimens have been investigated to analyze the fracture behavior.Results show that the grain boundary has dual influences on the fracture behavior.When the loading axis is parallel to the lamellar orientation,cracks are preferentially initiated at and propagate along the grain boundaries.When the loading axis is perpendicular to the lamellar orientation,the grain boundaries can prevent the propagation of cracks from running across.Additionally,serrated-shape grain boundaries have a better inhibiting effect on the propagation of cracks than planar boundaries.
基金supported by National Natural Science Foundation of China(No.50701030)China Postdoctoral Science Foundation(No.:20070410716)
文摘As the lightest structural metal,Mg and Mg-based alloys have great potential applications in the aerospace,automotive and nuclear industries.However,such applications have been limited by low ductility and strength.Theoretically,small grain sized structure can synchronously improve its ductility and strength.Yet,universally reliable grain ref inement techniques for the magnesium alloys are still under investigation and some are in strong debating.This paper presents a brief review of development of grain ref inement methods for magnesium alloys,which would contribute to a better understanding of the factors controlling grain ref inement and provide an outlook of future research in this fi eld.
基金Project(SGRI-WD-71-13-001) supported by the Scientific and Technological Project of State Grid Corporation of China
文摘The effect of Hf on the grain refinement of as-cast aluminum was investigated using optical microscopy, electron microscopy and X-ray diffraction. The result shows that the grain size of studied alloy decreases effectively with the addition of Hf,Hf can react with Al to form Al3Hf particles during the solidification, the primary Al3Hf particles are highly potent nucleants for Al and the nanoscale coherent Al3Hf particles can inhibit the grain growth by pinning effect. The grain refinement mechanism of studied alloys was verified by the solute theory and the crystallography study, and it can be divided into two distinct types: At low Hf contents, there are no primary Al3Hf phases to form, the acquired grain refinement is primarily attributed to the constitutional undercooling induced by the Hf solute. At medium and high Hf contents, both Hf solute and Al3Hf particles contribute to the refinement.
基金supported by the Major State Basic Research Development Program of China (No.2011CB012900)the National Natural Science Foundation of China (No.51374144)the Shanghai Rising-Star Program (No.14QA1402300)
文摘Isothermal hot compression tests of as-cast high-Cr ultra-super-critical(USC) rotor steel with columnar grains perpendicular to the compression direction were carried out in the temperature range from 950 to 1250°C at strain rates ranging from 0.001 to 1 s^(-1). The softening mechanism was dynamic recovery(DRV) at 950°C and the strain rate of 1 s^(-1), whereas it was dynamic recrystallization(DRX) under the other conditions. A modified constitutive equation based on the Arrhenius model with strain compensation reasonably predicted the flow stress under various deformation conditions, and the activation energy was calculated to be 643.92 kJ ×mol^(-1). The critical stresses of dynamic recrystallization under different conditions were determined from the work-hardening rate(θ)–flow stress(σ) and-θ/σ–σ curves. The optimum processing parameters via analysis of the processing map and the softening mechanism were determined to be a deformation temperature range from 1100 to 1200°C and a strain-rate range from 0.001 to 0.08 s^(-1), with a power dissipation efficiency η greater than 31%.
基金Project(2016YFB0301104)supported by National Key Research and Development Program of China
文摘The grain refinement of the as-cast AZ31 alloys by limestone particles was investigated by grain refining tests and microstructure observations. The results show that the limestone particles have a good grain refining potency, which is deeply related to the addition level of limestone and melting temperature. The optimal addition level and melting temperature are 2.0%(mass fraction) and 720 ℃, respectively. The average grain size of AZ31 alloy is reduced from(556±60) to(236±22) μm. The sound grain refining by raw limestone particles has a good anti-fading capacity without any significant grain coarsening in a 40 min holding time. The concerned grain refining mechanism should be attributed to the inoculated Al-C and Al-C/Al-Mn-(Fe) nuclei. Ultrasonic treatment can enhance the grain refining efficiency of limestone particles through cavitation-enhanced nucleation mechanism.
基金financial support of the National Natural Science Foundation of China(U21A20218 and 32101857)the‘Double First-Class’Key Scientific Research Project of Education Department in Gansu Province,China(GSSYLXM-02)+1 种基金the Fuxi Young Talents Fund of Gansu Agricultural University,China(Gaufx03Y10)the“Innovation Star”Program of Graduate Students in 2023 of Gansu Province,China(2023CXZX681)。
文摘The development of modern agriculture requires the reduction of water and chemical N fertilizer inputs.Increasing the planting density can maintain higher yields,but also consumes more of these restrictive resources.However,whether an increased maize density can compensate for the negative effects of reduced water and N supply on grain yield and N uptake in the arid irrigated areas remains unknown.This study is part of a long-term positioning trial that started in 2016.A split-split plot field experiment of maize was implemented in the arid irrigated area of northwestern China in 2020 to 2021.The treatments included two irrigation levels:local conventional irrigation reduced by 20%(W1,3,240 m^(3)ha^(-1))and local conventional irrigation(W2,4,050 m^(3)ha^(-1));two N application rates:local conventional N reduced by 25%(N1,270 kg ha^(-1))and local conventional N(360 kg ha^(-1));and three planting densities:local conventional density(D1,75,000 plants ha^(-1)),density increased by 30%(D2,97,500 plants ha-1),and density increased by 60%(D3,120,000 plants ha^(-1)).Our results showed that the grain yield and aboveground N accumulation of maize were lower under the reduced water and N inputs,but increasing the maize density by 30% can compensate for the reductions of grain yield and aboveground N accumulation caused by the reduced water and N supply.When water was reduced while the N application rate remained unchanged,increasing the planting density by 30% enhanced grain yield by 13.9% and aboveground N accumulation by 15.3%.Under reduced water and N inputs,increasing the maize density by 30% enhanced N uptake efficiency and N partial factor productivity,and it also compensated for the N harvest index and N metabolic related enzyme activities.Compared with W2N2D1,the N uptake efficiency and N partial factor productivity increased by 28.6 and 17.6%under W1N1D2.W1N2D2 had 8.4% higher N uptake efficiency and 13.9% higher N partial factor productivity than W2N2D1.W1N2D2 improved urease activity and nitrate reductase activity by 5.4% at the R2(blister)stage and 19.6% at the V6(6th leaf)stage,and increased net income and the benefit:cost ratio by 22.1 and 16.7%,respectively.W1N1D2 and W1N2D2 reduced the nitrate nitrogen and ammoniacal nitrogen contents at the R6 stage in the 40-100 cm soil layer,compared with W2N2D1.In summary,increasing the planting density by 30% can compensate for the loss of grain yield and aboveground N accumulation under reduced water and N inputs.Meanwhile,increasing the maize density by 30% improved grain yield and aboveground N accumulation when water was reduced by 20% while the N application rate remained constant in arid irrigation areas.
基金This project was finically supported by the R&D Foundation of Jiangsu Province,China(BE2022425)the National Key Research and Development Program of China(2022YFD2300304)the Priority Academic Program Development of Jiangsu Higher-Education Institutions,China(PAPD).
文摘Recently developed ‘super’ rice cultivars with greater yield potentials often suffer from the problem of poor grain filling, especially in inferior spikelets. Here, we studied the activities of enzymes related to starch metabolism in rice stems and grains, and the microstructures related to carbohydrate accumulation and transportation to investigate the effects of different water regimes on grain filling. Two ‘super’ rice cultivars were grown under two irrigation regimes of well-watered(WW) and alternate wetting and moderate soil drying(AWMD). Compared with the WW treatment,the activities of ADP glucose pyrophosphorylase(AGPase), starch synthase(StSase) and starch branching enzyme(SBE), and the accumulation of non-structural carbohydrates(NSCs) in the stems before heading were significantly improved, and more starch granules were stored in the stems in the AWMD treatment. After heading, the activities of α-amylase, β-amylase, sucrose phosphate synthase(SPS) and sucrose synthase in the synthetic direction(SSs)were increased in the stems to promote the remobilization of NSCs for grain filling under AWMD. During grain filling, the enzymatic activities of sucrose synthase in the cleavage direction(SSc), AGPase, StSase and SBE in the inferior spikelets were increased, which promoted grain filling, especially for the inferior spikelets under AWMD.However, there were no significant differences in vascular microstructures. The grain yield and grain weight could be improved by 13.1 and 7.5%, respectively, by optimizing of the irrigation regime. We concluded that the low activities of key enzymes in carbon metabolism is the key limitation for the poor grain filling, as opposed to the vascular microstructures, and AWMD can increase the amount of NSC accumulation in the stems before heading, improve the utilization rate of NSCs after heading, and increase the grain filling, especially in the inferior spikelets, by altering the activities of key enzymes in carbon metabolism.
基金This work is supported in part by the National Transgenic Science and Technology Program(2016ZX08010-002)National Natural Science Foundation of China(157101834)Agricultural Science and Technology Innovation Program of CAAS.
文摘The size and shape of rice grains influence their yield and commercial value.We investigated the role of OsDA1,a rice homolog of the Arabidopsis DA1 gene,in regulating grain size and shape.OsDA1 was highly expressed in young spikelets and glumes.Its overexpression led to enlarged seeds with increased width and decreased length/width ratio(LWR)and knocking out OsDA1 reduced grain width and increased grain length and LWR.A R310K point mutation in the DA1-like domain is a potential target for breeding for increased grain width and length.OsDA1 interacted with TCP gene-family proteins to regulate grain size and shape.Our findings deepen our understanding of the molecular mechanisms underlying grain size regulation and provide useful information for improving grain yield.
基金supported by grants from the National Natural Science Foundation of China(32325038)the Postdoctoral Fellowship Program of CPSF(GZB20230499)+1 种基金the Sichuan Science and Technology Program(24NSFSC4494)the Open Project Program(SKL-ZY202212)of State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China.We thank the High-Performance Computing Platform of Sichuan Agricultural University for its support for the analysis of substitution segments in CSSL9-17.
文摘Grain size is a key factor influencing grain weight in rice.In this study,a chromosome segment substitution line(CSSL9-17)was identified,that exhibits a significant reduction in both grain size and weight compared to its donor parent 93-11.Further investigation identified two quantitative trait loci(QTL)on chromosome 11,designated qGW11a and qGW11b,which contribute to 1000-grain weight with an additive effect.LOC_Os11g05690,encoding the amino acid permease OsCAT8,is the target gene of qGW11a.Overexpression of OsCAT8 resulted in decreased grain weight,while OsCAT8 knockout mutants exhibited increased grain weight.The 287-bp located within the OsCAT8 promoter region of 93-11 negatively regulates its activity,which is subsequently correlated with an increase in grain size and weight.These results suggest that OsCAT8 functions as a negative regulator of grain size and grain weight in rice.
文摘The superplastic behavior and associated deformation mechanisms of a fine-grained Mg-10.1 Li-0.8Al-0.6Zn alloy(LAZ1011)with a grain size of 3.2μm,primarily composed of the BCCβphase and a small amount of the HCPαphase,were examined in a temperature range of 473 K to 623 K.The microstructural refinement of this alloy was achieved by employing high-ratio differential speed rolling.The best superplasticity was achieved at 523 K and at strain rates of 10^(-4)-5×10^(-4)s^(-1),where tensile elongations of 550±600%were obtained.During the heating and holding stage of the tensile samples prior to tensile loading,a significant increase in grain size was observed at temperatures above 573 K.Therefore,it was important to consider this effect when analyzing and understanding the superplastic deformation behavior and mechanisms.In the investigated strain rate range,the superplastic flow at low strain rates was governed by lattice diffusion-controlled grain boundary sliding,while at high strain rates,lattice diffusion-controlled dislocation climb creep was the rate-controlling deformation mechanism.It was concluded that solute drag creep is unlikely to occur.During the late stages of deformation at 523 K,it was observed that grain boundary sliding led to the agglomeration of theαphase,resulting in significant strain hardening.Deformation mechanism maps were constructed forβ-Mg-Li alloys in the form of 2D and 3D formats as a function of strain rate,stress,temperature,and grain size,using the constitutive equations for various deformation mechanisms derived based on the data of the current tests.
基金the financial assistance provided by ICAR-IARI in the form of IARI Fellowship and Department of Science and Technology, Innovation in Science Pursuit for Inspired Research during the PhD programme。
文摘Increased nighttime respiratory losses decrease the amount of photoassimilates available for plant growth and yield. We hypothesized that the increased respiratory carbon loss under high night temperatures(HNT) could be compensated for by increased photosynthesis during the day following HNT exposure. Two rice genotypes, Vandana(HNT-sensitive) and Nagina 22(HNT-tolerant), were exposed to HNT(4 ℃ above the control) from flowering to physiological maturity. They were assessed for alterations in the carbon balance of the source(flag leaf) and its subsequent impact on grain filling dynamics and the quality of spatially differentiated sinks(superior and inferior spikelets). Both genotypes exhibited significantly higher night respiration rates. However, only Nagina 22 compensated for the high respiration rates with an increased photosynthetic rate, resulting in a steady production of total dry matter under HNT. Nagina 22 also recorded a higher grain-filling rate, particularly at 5 and 10 d after flowering, with 1.5- and 4.0-fold increases in the translocation of ^(14)C sugars to the superior and inferior spikelets, respectively. The ratio of photosynthetic rate to respiratory rate on a leaf area basis was negatively correlated with spikelet sterility, resulting in a higher filled spikelet number and grain weight per plant, particularly for inferior grains in Nagina 22. Grain quality parameters such as head rice recovery, high-density grains, and gelatinization temperature were maintained in Nagina 22. An increase in the rheological properties of rice flour starch in Nagina 22 under HNT indicated the stability of starch and its ability to reorganize during the cooling process of product formation. Thus, our study showed that sink adjustments between superior and inferior spikelets favored the growth of inferior spikelets, which helped to offset the reduction in grain weight under HNT in the tolerant genotype Nagina 22.
基金supported by the National Natural Science Foundation of China(Nos.12175231 and 11805131),Anhui Natural Science Foundation of China(No.2108085J05)Projects of International Cooperation and Exchanges NSFC(No.51111140389)the Collaborative Innovation Program of the Hefei Science Center,CAS(Nos.2021HSC-CIP020 and 2022HSCCIP009).
文摘Ferritic/martensitic(F/M)steel is widely used as a structural material in thermal and nuclear power plants.However,it is susceptible to intergranular damage,which is a critical issue,under service conditions.In this study,to improve the resistance to intergranular damage of F/M steel,a thermomechanical process(TMP)was employed to achieve a grain boundary engineering(GBE)microstructure in F/M steel P92.The TMP,including cold-rolling thickness reduction of 6%,9%,and 12%,followed by austenitization at 1323 K for 40 min and tempering at 1053 K for 45 min,was applied to the as-received(AR)P92 steel.The prior austenite grain(PAG)size,prior austenite grain boundary character distribution(GBCD),and connectivity of prior austenite grain boundaries(PAGBs)were investigated.Compared to the AR specimen,the PAG size did not change significantly.The fraction of coincident site lattice boundaries(CSLBs,3≤Σ≤29)and Σ3^(n) boundaries along PAGBs decreased with increasing reduction ratio because the recrystallization fraction increased with increasing reduction ratio.The PAGB connectivity of the 6%deformed specimen slightly deteriorated compared with that of the AR specimen.Moreover,potentiodynamic polarization studies revealed that the intergranular damage resistance of the studied steel could be improved by increasing the fraction of CSLBs along the PAGBs,indicating that the TMP,which involves low deformation,could enhance the intergranular damage resistance.
基金supported by the National Key Research and Development Program of China(2017YFD0300202-2)the National Natural Science Foundation of China(31871567)the Young Scholar of Tang(2017)。
文摘In a study comparing grain filling and yield in a large-and a small-grain-size wheat cultivar under two planting patterns and two irrigation regimes,plastic-covered ridge and furrow planting with sprinkler irrigation increased grain filling and yield in both cultivars.The largest contributors to grain yield were an extended active grain-filling period in Shuangda 1 and an increased mean grain-filling rate in XN538.
基金supported by the National Key Research and Development Program of China(2023YFD1200704 and 2023YFD1200700)the National Natural Science Foundation of China(32241042)+1 种基金the China Agricultural ResearchSystem(CARS06-14.5-A04)the Key Laboratory of Crop Gene Resource and Germplasm Enhancement,Ministry of Agriculture and Rural Affairs,China,and the Technology Innovation Program of Chinese Academy of Agricultural Sciences.
文摘Increasing crop grain yields is an urgent global priority due to population growth,shrinking arable land,and severe climate change in recent years(Tang et al.2023).Unraveling the process of panicle development is crucial for enhancing the grain yield of cereal crops.In the development of rice panicles,the inflorescence meristem(IM)gives rise to two types of lateral branch meristems(BMs):primary branch meristem(pBM)and secondary branch meristem(sBM).The pBM generates sBM and spikelet meristems(SMs),and the sBM further differentiates into more SMs(Zhang and Yuan 2014).
基金supported by the National Natural Science Foundation of China(32372118,32188102,32071993)the Qian Qian Academician Workstation,Specific Research Fund of the Innovation Platform for Academicians in Hainan Province(YSPTZX202303)+1 种基金Key Research and Development Program of Zhejiang Province(2021C02056)Hainan Seed Industry Laboratory,China(B21HJ0220)。
文摘The grass spikelet is a unique inflorescence structure that determines grain size.Although many genetic factors have been well characterized for grain size and glume development,the underlying molecular mechanisms in rice are far from established.Here,we isolated rice gene,AGL1 that controlled grain size and determines the fate of the sterile lemma.Loss of function of AGL1 produced larger grains and reduced the size of the sterile lemma.Larger grains in the agl1 mutant were caused by a larger number of cells that were longer and wider than in the wild type.The sterile lemma in the mutant spikelet was converted to a rudimentary glume-like organ.Our findings showed that the AGL1(also named LAX1)protein positively regulated G1 expression,and negatively regulated NSG1 expression,thereby affecting the fate of the sterile lemma.Taken together,our results revealed that AGL1 played a key role in negative regulation of grain size by controlling cell proliferation and expansion,and supported the opinion that rudimentary glume and sterile lemma in rice are homologous organs.
基金This work was funded by the National Key Research and Development Program of China(2023YFF1000404)the Shenzhen Basic Research and Development Key Program of China(JCYJ20200109150713553)Hainan Key Research and Development in Modern Agriculture of China(ZDYF2021Y128).
文摘Increasing effective panicle number per plant(EPN)is one approach to increase yield potential in rice.However,molecular mechanisms underlying EPN remain unclear.In this study,we integrated mapbased cloning and genome-wide association analysis to identify the EPN4 gene,which is allelic to NARROW LEAF1(NAL1).Overexpression lines containing the Teqing allele(TQ)of EPN4 had significantly increased EPN.NIL-EPN4^(TQ) in japonica(geng)cultivar Lemont(LT)exhibited significantly improved EPN but decreased grain number and flag leaf size relative to LT.Haplotype analysis indicated that accessions with EPN4-1 had medium EPN,medium grain number,and medium grain weight,but had the highest grain yield among seven haplotypes,indicating that EPN4-1 is an elite haplotype of EPN4 for positive coordination of the three components of grain yield.Furthermore,accessions carrying the combination of EPN4-1 and haplotype GNP1-6 of GNP1 for grain number per panicle showed higher grain yield than those with other allele combinations.Therefore,pyramiding of EPN4-1 and GNP1-6 could be a preferred approach to obtain high yield potential in breeding.
基金the National Natural Science Foundation of China(42230720,32160410,42167069)the Gansu Key Research and Development Program(22YF7FA078,GZTZ20240415)Gansu Province Forestry and Grassland Science and Technology Innovation Project(LCCX202303).
文摘The clay–sand barriers in Minqin desert area,China,represent a pioneering windbreak and sand fixation project with a venerable history of 60 a.However,studies on evaluating the long-term effectiveness of clay–sand barriers against aeolian erosion,particularly from the perspective of surface sediment grain size,are limited and thus insufficient to ascertain the protective impact of these barriers on regional aeolian activities.This study focused on the surface sediments(topsoil of 0–3 cm depth)of clay–sand barriers in Minqin desert area to explain their erosion resistance from the perspective of surface sediment grain size.In March 2023,six clay–sand barrier sampling plots with clay–sand barriers of different deployment durations(1,5,10,20,40,and 60 a)were selected as experimental plots,and one control sampling plot was set in an adjacent mobile sandy area without sand barriers.Surface sediment samples were collected from the topsoil of each sampling plot in the study area in April 2023 and sediment grain size characteristics were analyzed.Results indicated a predominance of fine and medium sands in the surface sediments of the study area.The deployment of clay–sand barriers cultivated a fine quality in grain size composition of the regional surface sediments,increasing the average contents of very fine sand,silt,and clay by 30.82%,417.38%,and 381.52%,respectively.This trend became markedly pronounced a decade after the deployment of clay–sand barriers.The effectiveness of clay–sand barriers in erosion resistance was manifested through reduced wind velocity,the interception of sand flow,and the promotion of fine surface sediment particles.Coarser particles such as medium,coarse,and very coarse sands predominantly accumulated on the external side of the barriers,while finer particles such as fine and very fine sands concentrated in the upwind(northwest)region of the barriers.By contrast,the contents of finest particles such as silt and clay were higher in the downwind(southeast)region of the sampling plots.For the study area,the deployment of clay–sand barriers remains one of the most cost-effective engineering solutions for aeolian erosion control,with sediment grain size parameters serving as quantitative indicators for the assessment of these barriers in combating desertification.The results of this study provide a theoretical foundation for the construction of windbreak and sand fixation systems and the optimization of artificial sand control projects in arid desert areas.