期刊文献+
共找到38,130篇文章
< 1 2 250 >
每页显示 20 50 100
A Novel Model for Describing Rail Weld Irregularities and Predicting Wheel-Rail Forces Using a Machine Learning Approach
1
作者 Linlin Sun Zihui Wang +3 位作者 Shukun Cui Ziquan Yan Weiping Hu Qingchun Meng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期555-577,共23页
Rail weld irregularities are one of the primary excitation sources for vehicle-track interaction dynamics in modern high-speed railways.They can cause significant wheel-rail dynamic interactions,leading to wheel-rail ... Rail weld irregularities are one of the primary excitation sources for vehicle-track interaction dynamics in modern high-speed railways.They can cause significant wheel-rail dynamic interactions,leading to wheel-rail noise,component damage,and deterioration.Few researchers have employed the vehicle-track interaction dynamic model to study the dynamic interactions between wheel and rail induced by rail weld geometry irregularities.However,the cosine wave model used to simulate rail weld irregularities mainly focuses on the maximum value and neglects the geometric shape.In this study,novel theoretical models were developed for three categories of rail weld irregularities,based on measurements of the high-speed railway from Beijing to Shanghai.The vertical dynamic forces in the time and frequency domains were compared under different running speeds.These forces generated by the rail weld irregularities that were measured and modeled,respectively,were compared to validate the accuracy of the proposed model.Finally,based on the numerical study,the impact force due to rail weld irrregularity is modeled using an Artificial Neural Network(ANN),and the optimum combination of parameters for this model is found.The results showed that the proposed model provided a more accurate wheel/rail dynamic evaluation caused by rail weld irregularities than that established in the literature.The ANN model used in this paper can effectively predict the impact force due to rail weld irrregularity while reducing the computation time. 展开更多
关键词 rail weld irregularity high-speed railway vehicle-track coupled dynamics wheel/rail dynamic vertical force artificial neural networks
下载PDF
EFFECT OF TRACE B AND Ga ON TRANSFORMATION CONTROL OF Mn-Si-Cr AS-ROLLED DUAL PHASE STEELS
2
作者 HE Zefu LIU Tianmo WU Yunjian chongqing University,Chongqing,China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1989年第6期447-450,共4页
Trace of B and Ga can substitute for Mo in Mn-Si-Cr dual phase steels.The technological process and CCT curves of steels treated with B and Ga are similar to those for Mn-Si-Cr-Mo steel.
关键词 as-rolled dual phase steel B GA technological process
下载PDF
Human intrusion detection for high-speed railway perimeter under all-weather condition 被引量:1
3
作者 Pengyue Guo Tianyun Shi +1 位作者 Zhen Ma Jing Wang 《Railway Sciences》 2024年第1期97-110,共14页
Purpose – The paper aims to solve the problem of personnel intrusion identification within the limits of highspeed railways. It adopts the fusion method of millimeter wave radar and camera to improve the accuracy ofo... Purpose – The paper aims to solve the problem of personnel intrusion identification within the limits of highspeed railways. It adopts the fusion method of millimeter wave radar and camera to improve the accuracy ofobject recognition in dark and harsh weather conditions.Design/methodology/approach – This paper adopts the fusion strategy of radar and camera linkage toachieve focus amplification of long-distance targets and solves the problem of low illumination by laser lightfilling of the focus point. In order to improve the recognition effect, this paper adopts the YOLOv8 algorithm formulti-scale target recognition. In addition, for the image distortion caused by bad weather, this paper proposesa linkage and tracking fusion strategy to output the correct alarm results.Findings – Simulated intrusion tests show that the proposed method can effectively detect human intrusionwithin 0–200 m during the day and night in sunny weather and can achieve more than 80% recognitionaccuracy for extreme severe weather conditions.Originality/value – (1) The authors propose a personnel intrusion monitoring scheme based on the fusion ofmillimeter wave radar and camera, achieving all-weather intrusion monitoring;(2) The authors propose a newmulti-level fusion algorithm based on linkage and tracking to achieve intrusion target monitoring underadverse weather conditions;(3) The authors have conducted a large number of innovative simulationexperiments to verify the effectiveness of the method proposed in this article. 展开更多
关键词 High-speed rail perimeter Personnel invasion Object detection ALL-WEATHER Radar-camera fusion
下载PDF
YOLO-O2E:A Variant YOLO Model for Anomalous Rail Fastening Detection
4
作者 Zhuhong Chu Jianxun Zhang +1 位作者 Chengdong Wang Changhui Yang 《Computers, Materials & Continua》 SCIE EI 2024年第7期1143-1161,共19页
Rail fasteners are a crucial component of the railway transportation safety system.These fasteners,distinguished by their high length-to-width ratio,frequently encounter elevated failure rates,necessitating manual ins... Rail fasteners are a crucial component of the railway transportation safety system.These fasteners,distinguished by their high length-to-width ratio,frequently encounter elevated failure rates,necessitating manual inspection and maintenance.Manual inspection not only consumes time but also poses the risk of potential oversights.With the advancement of deep learning technology in rail fasteners,challenges such as the complex background of rail fasteners and the similarity in their states are addressed.We have proposed an efficient and high-precision rail fastener detection algorithm,named YOLO-O2E(you only look once-O2E).Firstly,we propose the EFOV(Enhanced Field of View)structure,aiming to adjust the effective receptive field size of convolutional kernels to enhance insensitivity to small spatial variations.Additionally,The OD_MP(ODConv and MP_2)and EMA(EfficientMulti-Scale Attention)modules mentioned in the algorithm can acquire a wider spectrum of contextual information,enhancing the model’s ability to recognize and locate objectives.Additionally,we collected and prepared the GKA dataset,sourced from real train tracks.Through testing on the GKA dataset and the publicly available NUE-DET dataset,our method outperforms general-purpose object detection algorithms.On the GKA dataset,our model achieved a mAP 0.5 value of 97.6%and a mAP 0.5:0.95 value of 83.9%,demonstrating excellent inference speed.YOLO-O2E is an algorithm for detecting anomalies in railway fasteners that is applicable in practical industrial settings,addressing the industry gap in rail fastener detection. 展开更多
关键词 rail fastening detection deep learning anomalous rail fastening variant YOLO feature reinforcement
下载PDF
Research and design of an expert diagnosis system for rail vehicle driven by data mechanism models
5
作者 Lin Li Jiushan Wang Shilu Xiao 《Railway Sciences》 2024年第4期480-502,共23页
Purpose-The aim of this work is to research and design an expert diagnosis system for rail vehicle driven by data mechanism models.Design/methodology/approach-The expert diagnosis system utilizes statistical and deep ... Purpose-The aim of this work is to research and design an expert diagnosis system for rail vehicle driven by data mechanism models.Design/methodology/approach-The expert diagnosis system utilizes statistical and deep learning methods to model the real-time status and historical data features of rail vehicle.Based on data mechanism models,it predicts the lifespan of key components,evaluates the health status of the vehicle and achieves intelligent monitoring and diagnosis of rail vehicle.Findings-The actual operation effect of this system shows that it has improved the intelligent level of the rail vehicle monitoring system,which helps operators to monitor the operation of vehicle online,predict potential risks and faults of vehicle and ensure the smooth and safe operation of vehicle.Originality/value-This system improves the efficiency of rail vehicle operation,scheduling and maintenance through intelligent monitoring and diagnosis of rail vehicle. 展开更多
关键词 rail transit rail vehicle Expert diagnosis Intelligent operation and maintenance Deep learning Lifespan prediction Reliability analysis
下载PDF
Understanding the Resilience of Urban Rail Transit:Concepts,Reviews,and Trends
6
作者 Yun Wei Xin Yang +6 位作者 Xiao Xiao Zhiao Ma Tianlei Zhu Fei Dou Jianjun Wu Anthony Chen Ziyou Gao 《Engineering》 SCIE EI CAS CSCD 2024年第10期7-18,共12页
As the scale of urban rail transit(URT)networks expands,the study of URT resilience is essential for safe and efficient operations.This paper presents a comprehensive review of URT resilience and highlights potential ... As the scale of urban rail transit(URT)networks expands,the study of URT resilience is essential for safe and efficient operations.This paper presents a comprehensive review of URT resilience and highlights potential trends and directions for future research.First,URT resilience is defined by three primary abilities:absorption,resistance,and recovery,and four properties:robustness,vulnerability,rapidity,and redundancy.Then,the metrics and assessment approaches for URT resilience were summarized.The metrics are divided into three categories:topology-based,characteristic-based,and performance-based,and the assessment methods are divided into four categories:topological,simulation,optimization,and datadriven.Comparisons of various metrics and assessment approaches revealed that the current research trend in URT resilience is increasingly favoring the integration of traditional methods,such as conventional complex network analysis and operations optimization theory,with new techniques like big data and intelligent computing technology,to accurately assess URT resilience.Finally,five potential trends and directions for future research were identified:analyzing resilience based on multisource data,optimizing train diagram in multiple scenarios,accurate response to passenger demand through new technologies,coupling and optimizing passenger and traffic flows,and optimal line design. 展开更多
关键词 Urban rail transit Resilience assessment Resilience improvement Network disruption
下载PDF
Physics Guided Deep Learning-Based Model for Short-Term Origin–Destination Demand Prediction in Urban Rail Transit Systems Under Pandemic
7
作者 Shuxin Zhang Jinlei Zhang +3 位作者 Lixing Yang Feng Chen Shukai Li Ziyou Gao 《Engineering》 SCIE EI CAS CSCD 2024年第10期276-296,共21页
Accurate origin–destination(OD)demand prediction is crucial for the efficient operation and management of urban rail transit(URT)systems,particularly during a pandemic.However,this task faces several limitations,incl... Accurate origin–destination(OD)demand prediction is crucial for the efficient operation and management of urban rail transit(URT)systems,particularly during a pandemic.However,this task faces several limitations,including real-time availability,sparsity,and high-dimensionality issues,and the impact of the pandemic.Consequently,this study proposes a unified framework called the physics-guided adaptive graph spatial–temporal attention network(PAG-STAN)for metro OD demand prediction under pandemic conditions.Specifically,PAG-STAN introduces a real-time OD estimation module to estimate real-time complete OD demand matrices.Subsequently,a novel dynamic OD demand matrix compression module is proposed to generate dense real-time OD demand matrices.Thereafter,PAG-STAN leverages various heterogeneous data to learn the evolutionary trend of future OD ridership during the pandemic.Finally,a masked physics-guided loss function(MPG-loss function)incorporates the physical quantity information between the OD demand and inbound flow into the loss function to enhance model interpretability.PAG-STAN demonstrated favorable performance on two real-world metro OD demand datasets under the pandemic and conventional scenarios,highlighting its robustness and sensitivity for metro OD demand prediction.A series of ablation studies were conducted to verify the indispensability of each module in PAG-STAN. 展开更多
关键词 Short-term origin-destination demand prediction Urban rail transit PANDEMIC Physics-guided deep learning
下载PDF
An internal ballistic model of electromagnetic railgun based on PFN coupled with multi-physical field and experimental validation
8
作者 Benfeng Gu Haiyuan Li Baoming Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期254-261,共8页
To accelerate the practicality of electromagnetic railguns,it is necessary to use a combination of threedimensional numerical simulation and experiments to study the mechanism of bore damage.In this paper,a three-dime... To accelerate the practicality of electromagnetic railguns,it is necessary to use a combination of threedimensional numerical simulation and experiments to study the mechanism of bore damage.In this paper,a three-dimensional numerical model of the augmented railgun with four parallel unconventional rails is introduced to simulate the internal ballistic process and realize the multi-physics field coupling calculation of the rail gun,and a test experiment of a medium-caliber electromagnetic launcher powered by pulse formation network(PFN)is carried out.Various test methods such as spectrometer,fiber grating and high-speed camera are used to test several parameters such as muzzle initial velocity,transient magnetic field strength and stress-strain of rail.Combining the simulation results and experimental data,the damage condition of the contact surface is analyzed. 展开更多
关键词 Internal ballistic modeling Electromagnetic rail gun Multi-physics field coupling Experimental validation PFN
下载PDF
Kinematic-mapping-model-guided analysis and optimization of 2-PSS&1-RR circular-rail parallel mechanism for fully steerable phased array antennas
9
作者 Guodong Tan Xiangfei Meng +4 位作者 Xuechao Duan Lulu Cheng Dingchao Niu Shuai He Dan Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第8期136-154,共19页
This paper presents a systematic methodology for analyzing and optimizing an innovative antenna mount designed for phased array antennas, implemented through a novel 2-PSS&1-RR circular-rail parallel mechanism. In... This paper presents a systematic methodology for analyzing and optimizing an innovative antenna mount designed for phased array antennas, implemented through a novel 2-PSS&1-RR circular-rail parallel mechanism. Initially, a comparative motion analysis between the 3D model of the mount and its full-scale prototype is conducted to validate effectiveness. Given the inherent complexity, a kinematic mapping model is established between the mount and the crank-slider linkage, providing a guiding framework for subsequent analysis and optimization. Guided by this model, feasible inverse and forward solutions are derived, enabling precise identification of stiffness singularities. The concept of singularity distance is thus introduced to reflect the structural stiffness of the mount. Subsequently, also guided by the mapping model, a heuristic algorithm incorporating two backtracking procedures is developed to reduce the mount's mass. Additionally, a parametric finite-element model is employed to explore the relation between singularity distance and structural stiffness. The results indicate a significant reduction(about 16%) in the antenna mount's mass through the developed algorithm, while highlighting the singularity distance as an effective stiffness indicator for this type of antenna mount. 展开更多
关键词 Innovative antenna mount Circular rail Kinematic mapping model Crank-slider linkage Stiffness singularity BACKTRACKING
下载PDF
Running safety assessment method of trains under seismic conditions based on the derailment risk domain
10
作者 Zhihui Zhu Gaoyang Zhou +2 位作者 Weiqi Zheng Wei Gong Yongjiu Tang 《Railway Engineering Science》 EI 2024年第4期499-517,共19页
The accurate assessment of running safety during earthquakes is of significant importance for ensuring the safety of railway lines.Currently,assessment methods based on a single index suffer from issues such as misjud... The accurate assessment of running safety during earthquakes is of significant importance for ensuring the safety of railway lines.Currently,assessment methods based on a single index suffer from issues such as misjudgment of operational safety and difficulty in evaluating operational margin,making them unsuitable for assessing train safety during earthquakes.Therefore,in order to propose an effective evaluation method for the running safety of trains during earthquakes,this study employs three indexes,namely lateral displacement of the wheel–rail contact point,wheel unloading rate,and wheel lift,to describe the lateral and vertical contact states between the wheel and rail.The corresponding evolution characteristics of the wheel–rail contact states are determined,and the derailment forms under different frequency components of seismic motion are identified through dynamic numerical simulations of the train–track coupled system under sine excitation.The variations in the wheel–rail contact states during the transition from a safe state to the critical state of derailment are analyzed,thereby constructing the evolutionary path of train derailment and seismic derailment risk domain.Lastly,the wheel–rail contact and derailment states under seismic conditions are analyzed,thus verifying the effectiveness of the evaluation method for assessing running safety under earthquakes proposed in this study.The results indicate that the assessment method based on the derailment risk domain accurately and comprehensively reflects the wheel–rail contact states under seismic conditions.It successfully determines the forms of train derailment,the risk levels of derailment,and the evolutionary paths of derailment risk. 展开更多
关键词 Earthquake High-speed train Running safety Wheel–rail contact Derailment risk domain
下载PDF
On the Polygonal Wear Evolution of Heavy-Haul Locomotive Wheels due to Wheel/Rail Flexibility and Its Mitigation Measures
11
作者 Yunfan Yang Feifan Chai +3 位作者 Pengfei Liu Liang Ling Kaiyun Wang Wanming Zhai 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期40-61,共22页
Wheel polygonal wear can immensely worsen wheel/rail interactions and vibration performances of the train and track,and ultimately,lead to the shortening of service life of railway components.At present,wheel/rail med... Wheel polygonal wear can immensely worsen wheel/rail interactions and vibration performances of the train and track,and ultimately,lead to the shortening of service life of railway components.At present,wheel/rail medium-or high-frequency frictional interactions are perceived as an essential reason of the high-order polygonal wear of railway wheels,which are potentially resulted by the flexible deformations of the train/track system or other external excitations.In this work,the effect of wheel/rail flexibility on polygonal wear evolution of heavy-haul locomotive wheels is explored with aid of the long-term wheel polygonal wear evolution simulations,in which different flexible modeling of the heavy-haul wheel/rail coupled system is implemented.Further,the mitigation measures for the polygonal wear of heavy-haul locomotive wheels are discussed.The results point out that the evolution of polygonal wear of heavy-haul locomotive wheels can be veritably simulated with consideration of the flexible effect of both wheelset and rails.Execution of mixed-line operation of heavy-haul trains and application of multicut wheel re-profiling can effectively reduce the development of wheel polygonal wear.This research can provide a deep-going understanding of polygonal wear evolution mechanism of heavy-haul locomotive wheels and its mitigation measures. 展开更多
关键词 Heavy-haul locomotive Wheel polygonal wear Wheel/rail flexibility Long-term polygonal wear evolution Mitigation measures
下载PDF
Design and verification of an improved experimental platform for stray current in urban rail transit
12
作者 LI Yaning KANG Hong +3 位作者 WANG Ye LI Wenfei JIAO Meng ZHANG Wencai 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2024年第3期379-386,共8页
With the rapid development of urban rail transit,there have been an urgent problem of excessive stray current.Because the stray current distribution is random and difficult to verify in the field,we designed an improv... With the rapid development of urban rail transit,there have been an urgent problem of excessive stray current.Because the stray current distribution is random and difficult to verify in the field,we designed an improved stray current experimental platform by replacing the simulated aqueous solution with a real soil environment and by calculating the transition resistance by measuring the soil resistivity,which makes up for the defects in the previous references.Firstly,the mathematical models of rail-drainage net and rail-drainage netground were established,and the analytical expressions of current and voltage of rail,drainage net and other structures were derived.In addition,the simulation model was built,and the mathematical analysis results were compared with the simulation results.Secondly,the accuracy of the improved stray current experimental platform was verified by comparing the measured and simulation results.Finally,based on the experimental results,the influence factors of stray current were analyzed.The relevant conclusions provide experimental data and theoretical reference for the study of stray current in urban rail transit. 展开更多
关键词 urban rail transit stray current experimental platform transition resistance soil resistivity
下载PDF
Measured dynamic load distribution within the in situ axlebox bearing of high-speed trains under polygonal wheel–rail excitation
13
作者 Yu Hou Xi Wang +4 位作者 Jiaqi Wei Menghua Zhao Wei Zhao Huailong Shi Chengyu Sha 《Railway Engineering Science》 EI 2024年第4期444-460,共17页
The dynamic load distribution within in-service axlebox bearings of high-speed trains is crucial for the fatigue reliability assessment and forward design of axlebox bearings. This paper presents an in situ measuremen... The dynamic load distribution within in-service axlebox bearings of high-speed trains is crucial for the fatigue reliability assessment and forward design of axlebox bearings. This paper presents an in situ measurement of the dynamic load distribution in the four rows of two axlebox bearings on a bogie wheelset of a high-speed train under polygonal wheel–rail excitation. The measurement employed an improved strain-based method to measure the dynamic radial load distribution of roller bearings. The four rows of two axlebox bearings on a wheelset exhibited different ranges of loaded zones and different means of distributed loads. Besides, the mean value and standard deviation of measured roller–raceway contact loads showed non-monotonic variations with the frequency of wheel–rail excitation. The fatigue life of the four bearing rows under polygonal wheel–rail excitation was quantitatively predicted by compiling the measured roller–raceway contact load spectra of the most loaded position and considering the load spectra as input. 展开更多
关键词 High-speed train Axlebox bearing Dynamic load distribution In situ measurement Polygonal wheel–rail excitation
下载PDF
High-speed railway and safety: Insights from a bibliometric approach
14
作者 Apostolos Anagnostopoulos 《High-Speed Railway》 2024年第3期187-196,共10页
High-Speed Rail(HSR)systems represent a significant advancement in modern transportation.They offer rapid,efficient,and environmentally friendly alternatives to traditional rail,air travel and road transportation.Even... High-Speed Rail(HSR)systems represent a significant advancement in modern transportation.They offer rapid,efficient,and environmentally friendly alternatives to traditional rail,air travel and road transportation.Even if highspeed trains appeared approximately in the middle of the previous century,several aspects concerning safety remain.This study aims to comprehensively review the scientific literature related to the safety issues of high-speed railways.A bibliometric analysis was carried out utilizing 2358 publications from the last two decades(2004-2023)to understand better the existing research on HSR and safety.Future trends and thematic areas of research are identified and analyzed.Chinese researchers and universities have led the total number of current publications related to the context of HSR safety.While most of the publications come from Chinese institutions,a significant international collaboration can be identified.The main areas of research on HSR and safety can be classified into four main clusters based on the keywords co-occurrence analysis and are related to risk management,structural dynamics and resilience in railway systems,geotechnical engineering and tunnelling and maintenance technologies.Researchers and policymakers can use the results of this study to better understand the dynamics of scientific research in the field of highspeed railways and safety and make decisions about future directions and funding priorities. 展开更多
关键词 High-speed rail SAFETY Literature review Bibliometric analysis VOSViewer
下载PDF
KL-SG High-Speed Rail-a catalyst for national economic development Sri Viknesh Permalu and Karthigesu Nagarajoo
15
作者 Sri Viknesh Permalu Karthigesu Nagarajoo 《Railway Sciences》 2024年第3期265-278,共14页
Purpose-In an increasingly interconnected world,transportation infrastructure has emerged as a critical determinant of economic growth and global competitiveness.High-speed rail(HSR),characterized by its exceptional s... Purpose-In an increasingly interconnected world,transportation infrastructure has emerged as a critical determinant of economic growth and global competitiveness.High-speed rail(HSR),characterized by its exceptional speed and efficiency,has garnered widespread attention as a transformative mode of transportation that transcends borders and fosters economic development.The Kuala Lumpur-Singapore(KL-SG)HSR project stands as a prominent exemplar of this paradigm,symbolizing the potential of HSR to serve as a catalyst for national economic advancement.Design/methodologylapproach-This paper is prepared to provide an insight into the benefits and advantages of HSR based on proven case studies and references from global HSRs,including China,Spain,France and Japan.Findings-The findings that have been obtained focus on enhanced connectivity and accessibility,attracting foreign direct investment,revitalizing regional economies,urban development and city regeneration,boosting tourism and cultural exchange,human capital development,regionai integration and environmental and sustainability benefits.Originality/value-The KL-SG HSR,linking Kuala Lumpur and Singapore,epitomizes the potential for HSR to be a transformative agent in the realm of economic development.This project encapsulates the aspirations of two dynamic Southeast Asian economies,united in their pursuit of sustainable growth,enhanced connectivity and global competitiveness.By scrutinizing the KLSG High-Speed Rail through the lens of economic benchmarking,a deeper understanding emerges of how such projects can drive progress in areas such as cross-border trade,tourism,urban development and technological innovation. 展开更多
关键词 High-speed rail TRANSPORTATION railways Sustainable mobility Socioeconomic development Technology Papertype Case study
下载PDF
Effect of deformation parameters on the austenite dynamic recrystallization behavior of a eutectoid pearlite rail steel
16
作者 Haibo Feng Shaohua Li +7 位作者 Kexiao Wang Junheng Gao Shuize Wang Haitao Zhao Zhenyu Han Yong Deng Yuhe Huang Xinping Ma 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期833-841,共9页
Understandings of the effect of hot deformation parameters close to the practical production line on grain refinement are crucial for enhancing both the strength and toughness of future rail steels.In this work,the au... Understandings of the effect of hot deformation parameters close to the practical production line on grain refinement are crucial for enhancing both the strength and toughness of future rail steels.In this work,the austenite dynamic recrystallization(DRX)behaviors of a eutectoid pearlite rail steel were studied using a thermo-mechanical simulator with hot deformation parameters frequently employed in rail production lines.The single-pass hot deformation results reveal that the prior austenite grain sizes(PAGSs)for samples with different deformation reductions decrease initially with an increase in deformation temperature.However,once the deformation temperature is beyond a certain threshold,the PAGSs start to increase.It can be attributed to the rise in DRX volume fraction and the increase of DRX grain with deformation temperature,respectively.Three-pass hot deformation results show that the accumulated strain generated in the first and second deformation passes can increase the extent of DRX.In the case of complete DRX,PAGS is predominantly determined by the deformation temperature of the final pass.It suggests a strategic approach during industrial production where part of the deformation reduction in low temperature range can be shifted to the medium temperature range to release rolling mill loads. 展开更多
关键词 eutectoid pearlite rail steel prior austenite grain size dynamic recrystallization single-pass hot deformation three-pass hot deformation
下载PDF
Corrosion Test of the Steel Plate in a WJ-8 Fastener for High Speed Rail
17
作者 Zhiyong Wang Zhiping Zeng Hualiang (Harry) Teng 《Journal of Transportation Technologies》 2024年第1期16-30,共15页
It was found that the steel plate in the composite plate in the WJ-8 fastener used in high speed rail is rusty. The objective of this study is to test the zinc coating of the steel plate. A literature review was condu... It was found that the steel plate in the composite plate in the WJ-8 fastener used in high speed rail is rusty. The objective of this study is to test the zinc coating of the steel plate. A literature review was conducted to identify the zinc coating techniques, and the companies that can provide different coating service was identified. A salt fog chamber was built that was in compliance with the ANSI B117 code, and the steel plates that were coated by the identified companies were tested using the salt fog chamber. The results indicated that the coating technique that had the best performance in preventing corrosion was the Greenkote plates with passivation. The galvanized option had the roughest coating layer, and it was the most reactive in the salt water solution. This makes it non-ideal for the dynamic rail environment because the increased friction of the plate could damage the supports, especially during extreme temperatures that would cause the rail to expand or contract. Greenkote with Phosphate and ArmorGalv also provided increased corrosion prevention with a smooth, strong finish, but it had more rust on the surface area than the Greenkote with ELU passivation. The ArmorGalv sample had more rust on the surface area than the Greenkote samples. This may not be a weakness in the ArmorGalv process;rather, it likely was the result of this particular sample not having the added protection of a colored coating. 展开更多
关键词 Steel Plate for High Speed rail Fastening Steel Corrosion Zinc Coating Salt-Fog Chamber
下载PDF
Geospatial Analysis of Environmental and Safety Risks of Railways on Vulnerable Land Users in Point Douglas and St. Boniface Communities in Winnipeg, Canada
18
作者 Ijeoma Eze Shirley Thompson 《Journal of Geoscience and Environment Protection》 2024年第11期102-131,共30页
Train rails are associated with environmental and safety risks, often concentrating industry near their yards and rails. ArcGIS was applied to map the rail network, land uses, and industrial sites in Point Douglas and... Train rails are associated with environmental and safety risks, often concentrating industry near their yards and rails. ArcGIS was applied to map the rail network, land uses, and industrial sites in Point Douglas and St. Boniface in Winnipeg, Canada. We identified 123 land uses with vulnerable populations needing assistance in evacuation from hospitals, senior living facilities, schools and early childhood centres within a buffer of two km of the rails and conducted hotspot analysis. About two-fifths of the total population, 39% in Point Douglas and 40% in St. Boniface, are at risk from fire, spill or train derailment involving dangerous goods and requiring evacuations or isolation. 展开更多
关键词 rail Hazard rail Lines Industrial Sites Vulnerable Land Use Safety Risk rail Relocation
下载PDF
Optimal Scheduling of Multiple Rail Cranes in Rail Stations with Interference Crane Areas
19
作者 Nguyen Vu Anh Duy Nguyen Le Thai Nguyen Huu Tho 《Intelligent Automation & Soft Computing》 2024年第1期15-31,共17页
In this paper,we consider a multi-crane scheduling problem in rail stations because their operations directly influence the throughput of the rail stations.In particular,the job is not only assigned to cranes but also... In this paper,we consider a multi-crane scheduling problem in rail stations because their operations directly influence the throughput of the rail stations.In particular,the job is not only assigned to cranes but also the job sequencing is implemented for each crane to minimize the makespan of cranes.A dual cycle of cranes is used to minimize the number of working cycles of cranes.The rail crane scheduling problems in this study are based on the movement of containers.We consider not only the gantry moves,but also the trolley moves as well as the rehandle cases are also included.A mathematical model of multi-crane scheduling is developed.The traditional and parallel simulated annealing(SA)are adapted to determine the optimal scheduling solutions.Numerical examples are conducted to evaluate the applicability of the proposed algorithms.Verification of the proposed parallel SA is done by comparing it to existing previous works.Results of numerical computation highlighted that the parallel SA algorithm outperformed the SA and gave better solutions than other considered algorithms. 展开更多
关键词 Multi-crane scheduling logistics containers MAKESPAN rail stations
下载PDF
Current status and prospects of research on safety situation awareness of high speed railway operation environment
20
作者 Tianyun Shi Zhoulong Wang +4 位作者 Jia You Pengyue Guo Lili Jiang Huijin Fu Xu Gao 《Railway Sciences》 2024年第4期453-468,共16页
Purpose–The safety of high-speed rail operation environments is an important guarantee for the safe operation of high-speed rail.The operating environment of the high-speed rail is complex,and the main factors affect... Purpose–The safety of high-speed rail operation environments is an important guarantee for the safe operation of high-speed rail.The operating environment of the high-speed rail is complex,and the main factors affecting the safety of high-speed rail operating environment include meteorological disasters,perimeter intrusion and external environmental hazards.The purpose of the paper is to elaborate on the current research status and team research progress on the perception of safety situation in high-speed rail operation environment and to propose directions for further research in the future.Design/methodology/approach–In terms of the mechanism and spatio-temporal evolution law of the main influencing factors on the safety of high-speed rail operation environments,the research status is elaborated,and the latest research progress and achievements of the team are introduced.This paper elaborates on the research status and introduces the latest research progress and achievements of the team in terms of meteorological,perimeter and external environmental situation perception methods for high-speed rail operation.Findings–Based on the technical route of“situational awareness evaluation warning active control,”a technical system for monitoring the safety of high-speed train operation environments has been formed.Relevant theoretical and technical research and application have been carried out around the impact of meteorological disasters,perimeter intrusion and the external environment on high-speed rail safety.These works strongly support the improvement of China’s railway environmental safety guarantee technology.Originality/value–With the operation of CR450 high-speed trains with a speed of 400 kmper hour and the application of high-speed train autonomous driving technology in the future,new and higher requirements have been put forward for the safety of high-speed rail operation environments.The following five aspects of work are urgently needed:(1)Research the single factor disaster mechanism of wind,rain,snow,lightning,etc.for high-speed railways with a speed of 400 kms per hour,and based on this,study the evolution characteristics of multiple safety factors and the correlation between the high-speed driving safety environment,revealing the coupling disastermechanism ofmultiple influencing factors;(2)Research covers multi-source data fusion methods and associated features such as disaster monitoring data,meteorological information,route characteristics and terrain and landforms,studying the spatio-temporal evolution laws of meteorological disasters,perimeter intrusions and external environmental hazards;(3)In terms of meteorological disaster situation awareness,research high-precision prediction methods for meteorological information time series along high-speed rail lines and study the realization of small-scale real-time dynamic and accurate prediction of meteorological disasters along high-speed rail lines;(4)In terms of perimeter intrusion,research amulti-modal fusion perception method for typical scenarios of high-speed rail operation in all time,all weather and all coverage and combine artificial intelligence technology to achieve comprehensive and accurate perception of perimeter security risks along the high-speed rail line and(5)In terms of external environment,based on the existing general network framework for change detection,we will carry out research on change detection and algorithms in the surrounding environment of highspeed rail. 展开更多
关键词 High-speed rail operating environment Situation awareness Meteorological disasters Perimeter invasion External environment
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部