The geological behaviors of wet outflow deposition fly ash were investigated, including the feature of in-situ single and even bridge cone penetration test (CPT) curves, the change of the penetration parameters and va...The geological behaviors of wet outflow deposition fly ash were investigated, including the feature of in-situ single and even bridge cone penetration test (CPT) curves, the change of the penetration parameters and vane strength with the increase of depth and the difference of the penetration resistance on and down the water level. Drilling, CPT and vane shear test were carried out in silty clay, fine sand, and fly ash of the ash-dam. The CPT curves of the fly ash do not show a critical depth. The cone resistance (qc) of the fly ash is smaller than that of silty clay or sand; the friction resistance is smaller than that of filling silty clay, similar to that of deposition silty clay or more than that of fine sand; the friction ratio is smaller than that of filling silty clay, or more than that of deposition silty clay or much more than that of fine sand. The specific penetration resistance (ps) is similar to that of filling silty clay, or more than that of deposition silty clay. There is a clear interface effect between the deposition fly ash and the clay. Interface effect of ps-h curve at the groundwater table is clear, and ps of the fly ash reduces significantly under the table. The vane strength of the fly ash increases as the depth increases. The deposition fly ash with wet outflow is similar to silt in the geological behavior.展开更多
The behaviors of Cu, Pb, and Zn during the endothermic burning of heterogeneous wastes were investigated using a variety of operational parameters, i.e., the mixed waste ratio, burning temperature, and burning time, t...The behaviors of Cu, Pb, and Zn during the endothermic burning of heterogeneous wastes were investigated using a variety of operational parameters, i.e., the mixed waste ratio, burning temperature, and burning time, to obtain fundamental knowledge to generate an optimal burning operation and recycling strategy for bottom ash. Changing these parameters had no impact on the Cu content of the ash, whereas the Pb content depended on the burning temperature and the mixed ratio, and the Zn content was affected by all three parameters. It was found in this study that the optimal burning conditions were a temperature of 1100?C, a time of 15 minutes, and either the current waste conditions or waste conditions with double the waste plastic and wood content.展开更多
Coal fly ash is considered an industrial by-product derived from coal combustion in thermal power plant. It is one of the most complex anthropogenic materials. Its improper disposal has become an environmental concern...Coal fly ash is considered an industrial by-product derived from coal combustion in thermal power plant. It is one of the most complex anthropogenic materials. Its improper disposal has become an environmental concern and resulted in a waste of recoverable resources. The aim of this paper is to study the physico-chemical characteristics of binders based on coal fly ash and lime in order to develop an eco-cement. The various characterization tests carried out are X-ray fluorescence, X-ray diffraction, compressive strengths, thermophysical properties and setting time. X-ray fluorescence and X-ray diffraction were used to determine the chemical composition and phases of fly ash, lime and binders. This allowed us to see that the chemical composition of fly ash is similar to that of cement. Compressive strengths of mortars containing 20%, 40%, 60% and 80% of fly ash have shown that fly ash has a long-term positive effect which might be related to a pozzolanic activity. The L<sub>3</sub> binder consisting of 60% of coal fly ash and 40% lime has a higher compressive strength than the others. The binder setting start time is greater than that of cement but shorter than that of lime. The study of the thermophysical properties of the L<sub>3</sub> binder shows that it has a higher thermal resistance than cement mortar. Moreover, it heats up less quickly because of its low effusivity compared to that of the latter. This analysis highlighted the principal characteristics that must be taken into account to use coal fly correctly in lime-based materials.展开更多
Recently, the worldwide supply of rare earth element (REE) resources will be severely restricted. On the other hand, coal fly ash particles emitted from coal-fired electric power plants contain relatively high concent...Recently, the worldwide supply of rare earth element (REE) resources will be severely restricted. On the other hand, coal fly ash particles emitted from coal-fired electric power plants contain relatively high concentrations of REEs. The contents of REEs in coal fly ash are regularly several hundreds of ppmw. In order to extract and recover REEs from coal fly ash particles, as a first step, we have investigated their dissolution behavior in a dilute H2SO4 solvent. The REE content of coal fly ash specimens has been precisely determined, and their presence in the ash component of the original coal and their enrichment in coal fly ash particles during coal combustion have been suggested. REEs in coal fly ash dissolve gradually in H2SO4 over time, and this implies two types of occurrences of the REEs in coal fly ash particles. By applying the unreacted core model to the dissolution behavior of REEs in a H2SO4 solvent, we can explain both types of occurrences.展开更多
In the present day availability of agricultural waste products is very huge quantity. Most of the industries prefer Metal matrix composite (MMC) due to their density, high strength to weight ratio, hardness, corrosion...In the present day availability of agricultural waste products is very huge quantity. Most of the industries prefer Metal matrix composite (MMC) due to their density, high strength to weight ratio, hardness, corrosion resistance, fatigue and creep resistance. Hence they are widely used in structural applications along with aerospace and automobile industry, marine, sports, electronic and automation industries. In the present paper a study is focused on the mechanical, tribological and corrosion behavior of the metal matrix composite using different agro waste ash which is easily available. Agro waste ash like Rice Husk, groundnut shell, bamboo leaf, coconut shell can be used as reinforcement and applicable for various applications like automotive, structural components. From this current study, it’s clearly identified that addition of agro waste ash as reinforcement with Aluminium improves the properties of metal matrix composite. Aluminium metal with such reinforcement materials has shown a high specific strength, yield strength and ultimate tensile strength, also it will increase hardness, satisfactory levels of corrosion resistance.展开更多
The disposal of waste has become an environmental issue due to the limited available landfilling space. This paper aims to compare the characteristics of hydrated lime with fine sewage sludge ash (FSSA) and coal fly a...The disposal of waste has become an environmental issue due to the limited available landfilling space. This paper aims to compare the characteristics of hydrated lime with fine sewage sludge ash (FSSA) and coal fly ash (CFA). Multiple techniques, X-ray fluorescence (XRF), X-ray diffraction (XRD), the Fourier transform infrared (FTIR), compressive strengths, thermophysical properties, and setting time were used to assess the physicochemical characteristics of the lime-based materials. X-ray fluorescence and X-ray diffraction were used to determine the chemical composition and phases of ashes, lime and binders. The results showed that the chemical composition of ashes is similar to that of cement. Besides glass, the main minerals identified in CFA and FSSA are quartz (SiO<sub>2</sub>) and anhydrite (CaSO<sub>4</sub>). Moreover, calcium aluminium oxide (Ca<sub>3</sub>Al<sub>2</sub>O<sub>6</sub>) was detected for CFA and phosphorus calcium silicate (Ca<sub>2</sub>SiO<sub>4</sub>-Ca<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>) for FSSA and minor phases were detected for both. FTIR measurements were carried out to characterize the inorganics components of different samples. Compressive strengths of mortars with different formulations have shown that both have a long-term positive effect which might be related to a pozzolanic activity. For the CFA the L<sub>3</sub> binder consisting of 60% of coal fly ash and 40% lime has a higher compressive strength than the others while for the FSSA the L<sub>4</sub> binder consisting of 80% fine ash and 20% lime has a higher compressive strength than the others. Both binders setting start times are greater than that of cement but shorter than that of lime. The study of the thermophysical properties of binders shows that they have a higher thermal resistance than cement mortar. Moreover, binders heat up less quickly because of their low effusivity compared to cement. Lime-based materials system could be a promising option to both relieve the waste disposal pressure and provide a potential sustainable construction material.展开更多
基金Project(05JJ30105) supported by the Hunan Provincial Natural Science Foundation, ChinaProject(20070420818) supported by the China Postdoctoral Science Foundation
文摘The geological behaviors of wet outflow deposition fly ash were investigated, including the feature of in-situ single and even bridge cone penetration test (CPT) curves, the change of the penetration parameters and vane strength with the increase of depth and the difference of the penetration resistance on and down the water level. Drilling, CPT and vane shear test were carried out in silty clay, fine sand, and fly ash of the ash-dam. The CPT curves of the fly ash do not show a critical depth. The cone resistance (qc) of the fly ash is smaller than that of silty clay or sand; the friction resistance is smaller than that of filling silty clay, similar to that of deposition silty clay or more than that of fine sand; the friction ratio is smaller than that of filling silty clay, or more than that of deposition silty clay or much more than that of fine sand. The specific penetration resistance (ps) is similar to that of filling silty clay, or more than that of deposition silty clay. There is a clear interface effect between the deposition fly ash and the clay. Interface effect of ps-h curve at the groundwater table is clear, and ps of the fly ash reduces significantly under the table. The vane strength of the fly ash increases as the depth increases. The deposition fly ash with wet outflow is similar to silt in the geological behavior.
文摘The behaviors of Cu, Pb, and Zn during the endothermic burning of heterogeneous wastes were investigated using a variety of operational parameters, i.e., the mixed waste ratio, burning temperature, and burning time, to obtain fundamental knowledge to generate an optimal burning operation and recycling strategy for bottom ash. Changing these parameters had no impact on the Cu content of the ash, whereas the Pb content depended on the burning temperature and the mixed ratio, and the Zn content was affected by all three parameters. It was found in this study that the optimal burning conditions were a temperature of 1100?C, a time of 15 minutes, and either the current waste conditions or waste conditions with double the waste plastic and wood content.
文摘Coal fly ash is considered an industrial by-product derived from coal combustion in thermal power plant. It is one of the most complex anthropogenic materials. Its improper disposal has become an environmental concern and resulted in a waste of recoverable resources. The aim of this paper is to study the physico-chemical characteristics of binders based on coal fly ash and lime in order to develop an eco-cement. The various characterization tests carried out are X-ray fluorescence, X-ray diffraction, compressive strengths, thermophysical properties and setting time. X-ray fluorescence and X-ray diffraction were used to determine the chemical composition and phases of fly ash, lime and binders. This allowed us to see that the chemical composition of fly ash is similar to that of cement. Compressive strengths of mortars containing 20%, 40%, 60% and 80% of fly ash have shown that fly ash has a long-term positive effect which might be related to a pozzolanic activity. The L<sub>3</sub> binder consisting of 60% of coal fly ash and 40% lime has a higher compressive strength than the others. The binder setting start time is greater than that of cement but shorter than that of lime. The study of the thermophysical properties of the L<sub>3</sub> binder shows that it has a higher thermal resistance than cement mortar. Moreover, it heats up less quickly because of its low effusivity compared to that of the latter. This analysis highlighted the principal characteristics that must be taken into account to use coal fly correctly in lime-based materials.
文摘Recently, the worldwide supply of rare earth element (REE) resources will be severely restricted. On the other hand, coal fly ash particles emitted from coal-fired electric power plants contain relatively high concentrations of REEs. The contents of REEs in coal fly ash are regularly several hundreds of ppmw. In order to extract and recover REEs from coal fly ash particles, as a first step, we have investigated their dissolution behavior in a dilute H2SO4 solvent. The REE content of coal fly ash specimens has been precisely determined, and their presence in the ash component of the original coal and their enrichment in coal fly ash particles during coal combustion have been suggested. REEs in coal fly ash dissolve gradually in H2SO4 over time, and this implies two types of occurrences of the REEs in coal fly ash particles. By applying the unreacted core model to the dissolution behavior of REEs in a H2SO4 solvent, we can explain both types of occurrences.
文摘In the present day availability of agricultural waste products is very huge quantity. Most of the industries prefer Metal matrix composite (MMC) due to their density, high strength to weight ratio, hardness, corrosion resistance, fatigue and creep resistance. Hence they are widely used in structural applications along with aerospace and automobile industry, marine, sports, electronic and automation industries. In the present paper a study is focused on the mechanical, tribological and corrosion behavior of the metal matrix composite using different agro waste ash which is easily available. Agro waste ash like Rice Husk, groundnut shell, bamboo leaf, coconut shell can be used as reinforcement and applicable for various applications like automotive, structural components. From this current study, it’s clearly identified that addition of agro waste ash as reinforcement with Aluminium improves the properties of metal matrix composite. Aluminium metal with such reinforcement materials has shown a high specific strength, yield strength and ultimate tensile strength, also it will increase hardness, satisfactory levels of corrosion resistance.
文摘The disposal of waste has become an environmental issue due to the limited available landfilling space. This paper aims to compare the characteristics of hydrated lime with fine sewage sludge ash (FSSA) and coal fly ash (CFA). Multiple techniques, X-ray fluorescence (XRF), X-ray diffraction (XRD), the Fourier transform infrared (FTIR), compressive strengths, thermophysical properties, and setting time were used to assess the physicochemical characteristics of the lime-based materials. X-ray fluorescence and X-ray diffraction were used to determine the chemical composition and phases of ashes, lime and binders. The results showed that the chemical composition of ashes is similar to that of cement. Besides glass, the main minerals identified in CFA and FSSA are quartz (SiO<sub>2</sub>) and anhydrite (CaSO<sub>4</sub>). Moreover, calcium aluminium oxide (Ca<sub>3</sub>Al<sub>2</sub>O<sub>6</sub>) was detected for CFA and phosphorus calcium silicate (Ca<sub>2</sub>SiO<sub>4</sub>-Ca<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>) for FSSA and minor phases were detected for both. FTIR measurements were carried out to characterize the inorganics components of different samples. Compressive strengths of mortars with different formulations have shown that both have a long-term positive effect which might be related to a pozzolanic activity. For the CFA the L<sub>3</sub> binder consisting of 60% of coal fly ash and 40% lime has a higher compressive strength than the others while for the FSSA the L<sub>4</sub> binder consisting of 80% fine ash and 20% lime has a higher compressive strength than the others. Both binders setting start times are greater than that of cement but shorter than that of lime. The study of the thermophysical properties of binders shows that they have a higher thermal resistance than cement mortar. Moreover, binders heat up less quickly because of their low effusivity compared to cement. Lime-based materials system could be a promising option to both relieve the waste disposal pressure and provide a potential sustainable construction material.