A comparative study of the influence of elevated temperature on foam geopolymer using circulating fluidized bed combustion fly ash(CFA) was reported. Foam geopoymers were prepared with different amounts of foam agen...A comparative study of the influence of elevated temperature on foam geopolymer using circulating fluidized bed combustion fly ash(CFA) was reported. Foam geopoymers were prepared with different amounts of foam agent and different Si O2/Al2O3 molar ratios of 3.1, 3.4, and 3.8. The mechanical, thermo-physical properties and microstructure of the foam geopolymers before and after exposure to elevated temperature of 800, 1000, and 1200 ℃ were investigated. The specimen with Si O2/Al2O3 molar ratio of 3.8 exhibits the highest compressive strength, better microstructure and dimension stability before and after firing. Carnegeite, nepheline, and zeolite crystalline phases appearing after exposure may contribute to the good post-exposure strength. Low weight foam geopolymer using CFA can increase strength and maintain higher stability as high as 1000 ℃.展开更多
The bio-briquette technique which mixes coal, biomass and sulfur fixation agent and bio-briquettes under 3—5 t/cm 2 line pressure has aroused people's attention in view of controlling the air pollution and the ...The bio-briquette technique which mixes coal, biomass and sulfur fixation agent and bio-briquettes under 3—5 t/cm 2 line pressure has aroused people's attention in view of controlling the air pollution and the acid rain. In this paper, the physicochemical properties of bio-briquette and its ash were investigated. And the acid soil was improved by the bio-briquette combustion ash, which contained nutritive substances such as P, N, K and had the acid-neutralizing capacity(ANC). The pH, EC, effective nutrient elements(Ca, Mg, K, P and N), heavy metal elements(Al, Cu, Cd, Cr, Zn and Mn) and acid-neutralizing capacity change of ash-added soils within the range of 0—10%, were also studied. Specially, when 5% bio-briquette combustion ash was added to the tested soil, the content of the effective elements such as Ca, Mg and K rose by 100 times, 7 times and twice, respectively. The total nitrogen also increased by about twice. The results showed the oxyanions such as that of Al, Cu, Cd, Cr, Zn and Mn were not potentially dangerous, because they were about the same as the averages of them in Chinese soil. It is shown that the ANC became stronger, though the ANC hardly increases in the ash-added soil. On the basis of the evaluation indices, it is concluded that the best mixture ratio is to add 2.5%—8% of the bio-briquette combustion ash to the tested soil.展开更多
Circulating fluidized bed combustion (CFBC) ash can be used as supplementary cementitious material for concrete production for its high pozzolanic activity. We investigated the effect of curing conditions on the hyd...Circulating fluidized bed combustion (CFBC) ash can be used as supplementary cementitious material for concrete production for its high pozzolanic activity. We investigated the effect of curing conditions on the hydration and performance of CFBC ash-Portland cement system (30: 70, by mass) including hydration products, paste microstructure, linear expansion ratio, chemically combined water content and compressive strength. The results show that tobermorite rather than ettringite is generated under the condition of autoclaved curing. The expansion and mortar strength of the system cured in water is higher than those cured in air at a given age, and the strength and bulk volume may retract under the condition of air curing. In addition, autoclaved curing facilitates the increase of strength gain at early curing ages (the increase rate lowers down in the following ages) and the improvement of system volume stability. It is suggested that sufficient water is necessary for the curing of CFBC ash cementitious system, and autoclaved curing may be considered where volume stability is a primary concern.展开更多
For the handling, treatment and utilization of fly ash from biomass combustion its chemical composition and physical properties are important. In this study eight filter fly ashes from different grate-fired biomass co...For the handling, treatment and utilization of fly ash from biomass combustion its chemical composition and physical properties are important. In this study eight filter fly ashes from different grate-fired biomass combustion plants were investigated. In fly ash from straw combustion high concentrations of(K) were found, whereas in the fly ash from wood combustion the concentrations of Ca and Mg were higher. The average concentration of PO3-4was similar in both types of fly ashes. In all wood fly ashes some measured heavy metal concentrations were above the limits for utilization. The straw fly ashes were much less contaminated and can be utilized. For wood fly ash most parameters showed little variation, except from one fly ash where the dust pre-separator is in poor condition. The average values were: mass median diameter 4.3 ± 0.8 μm, spread of particle size distribution19 ± 11, particle density 2620 ± 80 kg/m^3 and angle of repose 50°± 1°. The density of the straw fly ashes is lower(2260 ± 80 kg/m^3) and the spread of the size distribution is higher(72 ± 24).For one straw combustion fly ash the values of the mass median diameter and the angle of repose were similar to the values of wood combustion fly ash, for the other straw fly ash the values differed considerably. While the particle size of this fly ash was much smaller,surprisingly the angle of repose was also lower. This can be attributed to the formation of small agglomerates in this fly ash, which were not disintegrated without a certain stress.展开更多
Miscanthus giganteus is one of the energy crops considered to show potential for a substantial contribution to sustainable energy production. In the literature there is little data available about the chemical composi...Miscanthus giganteus is one of the energy crops considered to show potential for a substantial contribution to sustainable energy production. In the literature there is little data available about the chemical composition of ashes from the combustion of Miscanthus and practically no data about their physical properties. However, for handling, treatment and utilization of the ashes this information is important. In this study ashes from two biomass combustion plants using Miscanthus as fuel were investigated. The density of the ashes was 2230 ± 35 kg/m;, which was similar to the density of ashes from straw combustion. Also the bulk densities were close to those reported for straw ashes. The flowability of the ashes was a little worse than the flowability of ashes from wood combustion. The measured heavy metal concentrations were below the usual limits for utilization of the ashes as soil conditioner. The concentrations in the bottom ash were similar to those reported for ash from forest residue combustion plants. In comparison with cyclone fly ashes from forest residue combustion the measured heavy metal concentrations in the cyclone fly ash were considerably lower. Cl-, S and Zn were enriched in the cyclone fly ash which is also known for ashes from wood combustion. In comparison with literature data obtained from Miscanthus plant material the concentrations of K, Cl-and S were lower.This can be attributed to the fact that the finest fly ash is not collected by the cyclone de-dusting system of the Miscanthus combustion plants.展开更多
基金Project(20120023110011) supported by Doctoral Program of Higher Education of ChinaProjects(2009KH09,2009QH02) supported by the Fundamental Research Funds for the Central Universities of China
文摘A comparative study of the influence of elevated temperature on foam geopolymer using circulating fluidized bed combustion fly ash(CFA) was reported. Foam geopoymers were prepared with different amounts of foam agent and different Si O2/Al2O3 molar ratios of 3.1, 3.4, and 3.8. The mechanical, thermo-physical properties and microstructure of the foam geopolymers before and after exposure to elevated temperature of 800, 1000, and 1200 ℃ were investigated. The specimen with Si O2/Al2O3 molar ratio of 3.8 exhibits the highest compressive strength, better microstructure and dimension stability before and after firing. Carnegeite, nepheline, and zeolite crystalline phases appearing after exposure may contribute to the good post-exposure strength. Low weight foam geopolymer using CFA can increase strength and maintain higher stability as high as 1000 ℃.
文摘The bio-briquette technique which mixes coal, biomass and sulfur fixation agent and bio-briquettes under 3—5 t/cm 2 line pressure has aroused people's attention in view of controlling the air pollution and the acid rain. In this paper, the physicochemical properties of bio-briquette and its ash were investigated. And the acid soil was improved by the bio-briquette combustion ash, which contained nutritive substances such as P, N, K and had the acid-neutralizing capacity(ANC). The pH, EC, effective nutrient elements(Ca, Mg, K, P and N), heavy metal elements(Al, Cu, Cd, Cr, Zn and Mn) and acid-neutralizing capacity change of ash-added soils within the range of 0—10%, were also studied. Specially, when 5% bio-briquette combustion ash was added to the tested soil, the content of the effective elements such as Ca, Mg and K rose by 100 times, 7 times and twice, respectively. The total nitrogen also increased by about twice. The results showed the oxyanions such as that of Al, Cu, Cd, Cr, Zn and Mn were not potentially dangerous, because they were about the same as the averages of them in Chinese soil. It is shown that the ANC became stronger, though the ANC hardly increases in the ash-added soil. On the basis of the evaluation indices, it is concluded that the best mixture ratio is to add 2.5%—8% of the bio-briquette combustion ash to the tested soil.
基金Funded by the National Natural Science Foundation of China(Nos.51132010 and 51272222)the Programs for Science and Technology Development of Yantai City,Shandong Province,China(No.2012ZH249)
文摘Circulating fluidized bed combustion (CFBC) ash can be used as supplementary cementitious material for concrete production for its high pozzolanic activity. We investigated the effect of curing conditions on the hydration and performance of CFBC ash-Portland cement system (30: 70, by mass) including hydration products, paste microstructure, linear expansion ratio, chemically combined water content and compressive strength. The results show that tobermorite rather than ettringite is generated under the condition of autoclaved curing. The expansion and mortar strength of the system cured in water is higher than those cured in air at a given age, and the strength and bulk volume may retract under the condition of air curing. In addition, autoclaved curing facilitates the increase of strength gain at early curing ages (the increase rate lowers down in the following ages) and the improvement of system volume stability. It is suggested that sufficient water is necessary for the curing of CFBC ash cementitious system, and autoclaved curing may be considered where volume stability is a primary concern.
文摘For the handling, treatment and utilization of fly ash from biomass combustion its chemical composition and physical properties are important. In this study eight filter fly ashes from different grate-fired biomass combustion plants were investigated. In fly ash from straw combustion high concentrations of(K) were found, whereas in the fly ash from wood combustion the concentrations of Ca and Mg were higher. The average concentration of PO3-4was similar in both types of fly ashes. In all wood fly ashes some measured heavy metal concentrations were above the limits for utilization. The straw fly ashes were much less contaminated and can be utilized. For wood fly ash most parameters showed little variation, except from one fly ash where the dust pre-separator is in poor condition. The average values were: mass median diameter 4.3 ± 0.8 μm, spread of particle size distribution19 ± 11, particle density 2620 ± 80 kg/m^3 and angle of repose 50°± 1°. The density of the straw fly ashes is lower(2260 ± 80 kg/m^3) and the spread of the size distribution is higher(72 ± 24).For one straw combustion fly ash the values of the mass median diameter and the angle of repose were similar to the values of wood combustion fly ash, for the other straw fly ash the values differed considerably. While the particle size of this fly ash was much smaller,surprisingly the angle of repose was also lower. This can be attributed to the formation of small agglomerates in this fly ash, which were not disintegrated without a certain stress.
文摘Miscanthus giganteus is one of the energy crops considered to show potential for a substantial contribution to sustainable energy production. In the literature there is little data available about the chemical composition of ashes from the combustion of Miscanthus and practically no data about their physical properties. However, for handling, treatment and utilization of the ashes this information is important. In this study ashes from two biomass combustion plants using Miscanthus as fuel were investigated. The density of the ashes was 2230 ± 35 kg/m;, which was similar to the density of ashes from straw combustion. Also the bulk densities were close to those reported for straw ashes. The flowability of the ashes was a little worse than the flowability of ashes from wood combustion. The measured heavy metal concentrations were below the usual limits for utilization of the ashes as soil conditioner. The concentrations in the bottom ash were similar to those reported for ash from forest residue combustion plants. In comparison with cyclone fly ashes from forest residue combustion the measured heavy metal concentrations in the cyclone fly ash were considerably lower. Cl-, S and Zn were enriched in the cyclone fly ash which is also known for ashes from wood combustion. In comparison with literature data obtained from Miscanthus plant material the concentrations of K, Cl-and S were lower.This can be attributed to the fact that the finest fly ash is not collected by the cyclone de-dusting system of the Miscanthus combustion plants.