A constructive-pruning hybrid method (CPHM) for radial basis function (RBF) networks is proposed to improve the prediction accuracy of ash fusion temperatures (AFT). The CPHM incorporates the advantages of the c...A constructive-pruning hybrid method (CPHM) for radial basis function (RBF) networks is proposed to improve the prediction accuracy of ash fusion temperatures (AFT). The CPHM incorporates the advantages of the construction algorithm and the pruning algorithm of neural networks, and the training process of the CPHM is divided into two stages: rough tuning and fine tuning. In rough tuning, new hidden units are added to the current network until some performance index is satisfied. In fine tuning, the network structure and the model parameters are further adjusted. And, based on components of coal ash, a model using the CPHM is established to predict the AFT. The results show that the CPHM prediction model is characterized by its high precision, compact network structure, as well as strong generalization ability and robustness.展开更多
Flow property of coal ash and slag is an important parameter for slag tapping of entrained flow gasifier.The viscosity of slag with high contents of calcium and iron exhibits the behavior of a crystalline slag,of whic...Flow property of coal ash and slag is an important parameter for slag tapping of entrained flow gasifier.The viscosity of slag with high contents of calcium and iron exhibits the behavior of a crystalline slag,of which viscosity sharply increases when temperature is lowered than temperature of critical viscosity(TCV).The fluctuation in temperature near the TCVcan cause an accumulation of slag inside the gasifier.In order to prevent slag blockage,it is necessary to adjust the ash composition by additive to modify the flow property of coal rich in calcium and iron.Main components of coal gangue are Al_(2)O_(3) and SiO_(2),which is a potential additive to modify the ash flow properties of these coals.In this work,we investigated the ash flow properties of a typical coal rich in calcium and iron by adding coal gangue with different SiO_(2)/Al_(2)O_(3)ratio.The results showed that the ash fusion temperatures(AFTs)firstly decreased,and then increased with increasing amount of coal gangue addition.Chemical composition of coal ash rich in calcium and iron moved from gehlenite primary phase to anorthite,quartz and corundum primary phases.The slags with coal gangue addition behaved as a glassy slag,of which the viscosity gradually increased as temperature decreased.Besides,a high SiO_(2)/Al_(2)O_(3)ratio of coal gangue was beneficial to modify the slag viscosity behavior.Addition of coal gangue with a high SiO_(2)/Al_(2)O_(3)ratio impeded formation of crystalline phases during cooling.This work demonstrated that coal gangue addition was an effective way to improve the ash flow properties of the coal rich in calcium and iron for the entrained flow gasifier.展开更多
One of the crucial issues in modern ash chemistry is the realization of efficient and clean coal conversion.Industrially,large-scale coal gasification technology is well known as the foundation to improve the atom eco...One of the crucial issues in modern ash chemistry is the realization of efficient and clean coal conversion.Industrially,large-scale coal gasification technology is well known as the foundation to improve the atom economy.In practice,the coal ash fusibility is a critical factor to determine steady operation standards of the gasifier,which is also the significant criterion to coal species selection for gasification.Since coal behaviors are resultant from various evolutions in different scales,the multi-scale understanding of the ash chemistry is of significance to guide the fusibility adjustment for coal gasification.Considering important roles of molecular simulation in exploring ash chemistry,this paper reviews the recent studies and developments on modeling of molecular systems for fusibility related ash chemistry for the first time.The discussions are emphasized on those performed by quantum mechanics and molecular mechanics,the two major simulation methods for microscopic systems,which may provide various insights into fusibility mechanism.This review article is expected to present comprehensive information for recent molecular simulations of coal chemistry so that new clues to find strategies controlling the ash fusion behavior can be obtained.展开更多
In order to mitigate the slagging risks of high-alkali coal (HAC) gasification while optimizing the operating temperatures for practical application,the experimental and calculational works were performed on the horiz...In order to mitigate the slagging risks of high-alkali coal (HAC) gasification while optimizing the operating temperatures for practical application,the experimental and calculational works were performed on the horizontal tubular furnace system and the FactSage 7.2 software,respectively.The slagging tendencies of three HACs were anticipated by applying different indexes of ash chemistry characteristics prior to experiments,but the determined results were found inconsistent.The relationship between Na retained ratio (RNa) and the ash fusion temperatures (AFTs) of gasification residues demonstrated that the AFTs of coal with high RNa are low,while AFTs of coal with low RNa are high.Nevertheless,when the residues contained a large number of calcium-containing silicates and aluminosilicates,the ATFs were reduced significantly even if its RNa stayed at a low level.Furthermore,the operating temperatures of the three coals (in order of Mulei coal,Shaerhu coal,and Tietou coal) were suggested to be controlled below 1150℃,1100℃,and 950℃,respectively.展开更多
基金The National Natural Science Foundation of China(No.60875035)the Natural Science Foundation of Jiangsu Province(No.BK2008294)the National High Technology Research and Development Program of China(863 Program)(No.2006AA05A107)
文摘A constructive-pruning hybrid method (CPHM) for radial basis function (RBF) networks is proposed to improve the prediction accuracy of ash fusion temperatures (AFT). The CPHM incorporates the advantages of the construction algorithm and the pruning algorithm of neural networks, and the training process of the CPHM is divided into two stages: rough tuning and fine tuning. In rough tuning, new hidden units are added to the current network until some performance index is satisfied. In fine tuning, the network structure and the model parameters are further adjusted. And, based on components of coal ash, a model using the CPHM is established to predict the AFT. The results show that the CPHM prediction model is characterized by its high precision, compact network structure, as well as strong generalization ability and robustness.
基金supported by the Fundamental Research Funds for the Central Universities(2017CXNL04)。
文摘Flow property of coal ash and slag is an important parameter for slag tapping of entrained flow gasifier.The viscosity of slag with high contents of calcium and iron exhibits the behavior of a crystalline slag,of which viscosity sharply increases when temperature is lowered than temperature of critical viscosity(TCV).The fluctuation in temperature near the TCVcan cause an accumulation of slag inside the gasifier.In order to prevent slag blockage,it is necessary to adjust the ash composition by additive to modify the flow property of coal rich in calcium and iron.Main components of coal gangue are Al_(2)O_(3) and SiO_(2),which is a potential additive to modify the ash flow properties of these coals.In this work,we investigated the ash flow properties of a typical coal rich in calcium and iron by adding coal gangue with different SiO_(2)/Al_(2)O_(3)ratio.The results showed that the ash fusion temperatures(AFTs)firstly decreased,and then increased with increasing amount of coal gangue addition.Chemical composition of coal ash rich in calcium and iron moved from gehlenite primary phase to anorthite,quartz and corundum primary phases.The slags with coal gangue addition behaved as a glassy slag,of which the viscosity gradually increased as temperature decreased.Besides,a high SiO_(2)/Al_(2)O_(3)ratio of coal gangue was beneficial to modify the slag viscosity behavior.Addition of coal gangue with a high SiO_(2)/Al_(2)O_(3)ratio impeded formation of crystalline phases during cooling.This work demonstrated that coal gangue addition was an effective way to improve the ash flow properties of the coal rich in calcium and iron for the entrained flow gasifier.
基金supported by National Nataral Science Foundation of China-Deutsche Forschungsgemeinschaft(Grant number21761132032)National Key R&D Program of China(2017YFB0304300&2017YFB0304303)National Key R&D Program of China(2017YFB0304000)。
文摘One of the crucial issues in modern ash chemistry is the realization of efficient and clean coal conversion.Industrially,large-scale coal gasification technology is well known as the foundation to improve the atom economy.In practice,the coal ash fusibility is a critical factor to determine steady operation standards of the gasifier,which is also the significant criterion to coal species selection for gasification.Since coal behaviors are resultant from various evolutions in different scales,the multi-scale understanding of the ash chemistry is of significance to guide the fusibility adjustment for coal gasification.Considering important roles of molecular simulation in exploring ash chemistry,this paper reviews the recent studies and developments on modeling of molecular systems for fusibility related ash chemistry for the first time.The discussions are emphasized on those performed by quantum mechanics and molecular mechanics,the two major simulation methods for microscopic systems,which may provide various insights into fusibility mechanism.This review article is expected to present comprehensive information for recent molecular simulations of coal chemistry so that new clues to find strategies controlling the ash fusion behavior can be obtained.
基金This work was financially supported by Beijing Municipal Science and Technology Commission(No.Z181100005118006).
文摘In order to mitigate the slagging risks of high-alkali coal (HAC) gasification while optimizing the operating temperatures for practical application,the experimental and calculational works were performed on the horizontal tubular furnace system and the FactSage 7.2 software,respectively.The slagging tendencies of three HACs were anticipated by applying different indexes of ash chemistry characteristics prior to experiments,but the determined results were found inconsistent.The relationship between Na retained ratio (RNa) and the ash fusion temperatures (AFTs) of gasification residues demonstrated that the AFTs of coal with high RNa are low,while AFTs of coal with low RNa are high.Nevertheless,when the residues contained a large number of calcium-containing silicates and aluminosilicates,the ATFs were reduced significantly even if its RNa stayed at a low level.Furthermore,the operating temperatures of the three coals (in order of Mulei coal,Shaerhu coal,and Tietou coal) were suggested to be controlled below 1150℃,1100℃,and 950℃,respectively.