期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Effects of Fly Ash/Diatomite Admixture with Variable Particle Sizes on the Mechanical Properties and Porosity of Concrete
1
作者 刘军 WU Kewei +1 位作者 WANG Yufei YANG Yuanquan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第5期1072-1079,共8页
Fly ash and diatomite were mixed uniformly and ground within various time scale and fly ash/diatomite admixtures with variable particle sizes were obtained. Effects of particle size distributions of the admixtures on ... Fly ash and diatomite were mixed uniformly and ground within various time scale and fly ash/diatomite admixtures with variable particle sizes were obtained. Effects of particle size distributions of the admixtures on the mechanical properties and porosity of concrete were studied. The relationship between the size distribution of the admixture and the concrete porosity was obtained based on the regression analysis of the data. The results show that compressive and flexural strengths of the concrete at 3 d and 7 d increase with the decrease of the admixture particle size. With regards to the concrete at 14 d, lowering the particle size of fly ash/diatomite admixture leads to the increasing of the compressive and flexural strength of the concrete, before decreasing afterwards again. At the d50 value of 15.2 μm, the mechanical properties of concrete were greatly improved. In addition, finer particle of the fly ash/diatomite admixture leads to significant micro-aggregate effect and volcanic ash effect and thus obtains denser pore structure, smaller porosity and higher hydration degree of the cementitious material. Especially for the samples curing at the early stage, the improving effect on the pore structure was obvious. 展开更多
关键词 fly ash/diatomite admixture mechanical properties porosity
下载PDF
Growth, Metabolism and Yield of Rice Cultivated in Soils Amended with Fly Ash and Cyanobacteria and Metal Loads in Plant Parts 被引量:1
2
作者 Rabindra N.PADHY Nabakishore NAYAK +2 位作者 Rajesh R.DASH-MOHINI Shakti RATH Rajani K.SAHU 《Rice science》 SCIE CSCD 2016年第1期22-32,共11页
Soil amendment with fly ash(FA) and combined supplementation with N_2-fixing cyanobacteria masses as biofertilizer were done in field experiments with rice. Amendments with FA levels, 0, 0.5, 1.0, 2.0, 4.0, 8.0 and ... Soil amendment with fly ash(FA) and combined supplementation with N_2-fixing cyanobacteria masses as biofertilizer were done in field experiments with rice. Amendments with FA levels, 0, 0.5, 1.0, 2.0, 4.0, 8.0 and 10.0 kg/m2, caused increase in growth and yield of rice up to 8.0 kg/m2, monitored with several parameters. Pigment contents and enzyme activities of leaves were enhanced by FA, with the maximum level of FA at 10.0 kg/m2. Protein content of rice seeds was the highest in plants grown at FA level 4.0 kg/m2. Basic soil properties, p H value, percentage of silt, percentage of clay, water-holding capacity, electrical conductivity, cation exchange capacity, and organic carbon content increased due to the FA amendment. Parallel supplementation of FA amended plots with 1.0 kg/m2 N_2-fixing cyanobacteria mass caused further significant increments of the most soil properties, and rice growth and yield parameters. 1000-grain weight of rice plants grown at FA level 4.0 kg/m2 along with cyanobacteria supplementation was the maximum. Cyanobacteria supplementation caused increase of important basic properties of soil including the total N-content. Estimations of elemental content in soils and plant parts(root and seed) were done by the atomic absorption spectrophotometry. Accumulations of K, P, Fe and several plant micronutrients(Mn, Ni, Co, Zn and Cu) and toxic elements(Pb, Cr and Cd) increased in soils and plant parts as a function of the FA gradation, but Na content remained almost unchanged in soils and seeds. Supplementation of cyanobacteria had ameliorating effect on toxic metal contents of soils and plant parts. The FA level 4.0 kg/m2, with 1.0 kg/m2 cyanobacteria mass supplementation, could be taken ideal, since there would be recharging of the soil with essential micronutrients as well as toxic chemicals in comparative lesser proportions, and cyanobacteria mass would cause lessening toxic metal loads with usual N_2-fixation. 展开更多
关键词 soil property cyanobacteria fly ash growth heavy metal rice toxic element yield
下载PDF
Chemical composition and properties of ashes from combustion plants using Miscanthus as fuel
3
作者 Christof Lanzerstorfer 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2017年第4期178-183,共6页
Miscanthus giganteus is one of the energy crops considered to show potential for a substantial contribution to sustainable energy production. In the literature there is little data available about the chemical composi... Miscanthus giganteus is one of the energy crops considered to show potential for a substantial contribution to sustainable energy production. In the literature there is little data available about the chemical composition of ashes from the combustion of Miscanthus and practically no data about their physical properties. However, for handling, treatment and utilization of the ashes this information is important. In this study ashes from two biomass combustion plants using Miscanthus as fuel were investigated. The density of the ashes was 2230 ± 35 kg/m;, which was similar to the density of ashes from straw combustion. Also the bulk densities were close to those reported for straw ashes. The flowability of the ashes was a little worse than the flowability of ashes from wood combustion. The measured heavy metal concentrations were below the usual limits for utilization of the ashes as soil conditioner. The concentrations in the bottom ash were similar to those reported for ash from forest residue combustion plants. In comparison with cyclone fly ashes from forest residue combustion the measured heavy metal concentrations in the cyclone fly ash were considerably lower. Cl-, S and Zn were enriched in the cyclone fly ash which is also known for ashes from wood combustion. In comparison with literature data obtained from Miscanthus plant material the concentrations of K, Cl-and S were lower.This can be attributed to the fact that the finest fly ash is not collected by the cyclone de-dusting system of the Miscanthus combustion plants. 展开更多
关键词 Biomass combustion Miscanthus ash composition ash properties
原文传递
Chemical composition and physical properties of filter fly ashes from eight grate-fired biomass combustion plants 被引量:4
4
作者 Christof Lanzerstorfer 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2015年第4期191-197,共7页
For the handling, treatment and utilization of fly ash from biomass combustion its chemical composition and physical properties are important. In this study eight filter fly ashes from different grate-fired biomass co... For the handling, treatment and utilization of fly ash from biomass combustion its chemical composition and physical properties are important. In this study eight filter fly ashes from different grate-fired biomass combustion plants were investigated. In fly ash from straw combustion high concentrations of(K) were found, whereas in the fly ash from wood combustion the concentrations of Ca and Mg were higher. The average concentration of PO3-4was similar in both types of fly ashes. In all wood fly ashes some measured heavy metal concentrations were above the limits for utilization. The straw fly ashes were much less contaminated and can be utilized. For wood fly ash most parameters showed little variation, except from one fly ash where the dust pre-separator is in poor condition. The average values were: mass median diameter 4.3 ± 0.8 μm, spread of particle size distribution19 ± 11, particle density 2620 ± 80 kg/m^3 and angle of repose 50°± 1°. The density of the straw fly ashes is lower(2260 ± 80 kg/m^3) and the spread of the size distribution is higher(72 ± 24).For one straw combustion fly ash the values of the mass median diameter and the angle of repose were similar to the values of wood combustion fly ash, for the other straw fly ash the values differed considerably. While the particle size of this fly ash was much smaller,surprisingly the angle of repose was also lower. This can be attributed to the formation of small agglomerates in this fly ash, which were not disintegrated without a certain stress. 展开更多
关键词 Biomass combustion Filter fly ash Chemical analysis Physical properties
原文传递
Characteristics of biomass ashes from different materials and their ameliorative effects on acid soils 被引量:5
5
作者 Renyong Shi Jiuyu Li +4 位作者 Jun Jiang Khalid Mehmood Yuan Liu Renkou Xu Wei Qian 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2017年第5期294-302,共9页
The chemical characteristics,element contents,mineral compositions,and the ameliorative effects on acid soils of five biomass ashes from different materials were analyzed. The chemical properties of the ashes varied d... The chemical characteristics,element contents,mineral compositions,and the ameliorative effects on acid soils of five biomass ashes from different materials were analyzed. The chemical properties of the ashes varied depending on the source biomass material. An increase in the concrete shuttering contents in the biomass materials led to higher alkalinity,and higher Ca and Mg levels in biomass ashes,which made them particularly good at ameliorating effects on soil acidity. However,heavy metal contents,such as Cr,Cu,and Zn in the ashes,were relatively high. The incorporation of all ashes increased soil p H,exchangeable base cations,and available phosphorus,but decreased soil exchangeable acidity. The application of the ashes from biomass materials with a high concrete shuttering content increased the soil available heavy metal contents. Therefore,the biomass ashes from wood and crop residues with low concrete contents were the better acid soil amendments. 展开更多
关键词 Biomass ashes Raw materials Element composition Chemical properties Amelioration of acidic soils Available heavy metals
原文传递
Dissolution kinetics of solid fuels used in COREX gasifier and its influence factors 被引量:6
6
作者 Run-sheng Xu Jian-liang Zhang +3 位作者 Wei Wang Hai-bin Zuo Zheng-liang Xue Ming-ming song 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2018年第3期298-309,共12页
Carbon dissolution from solid fuels used in a COREX gasifier was investigated in a high-temperature furnace to investigate the influences of temperature, carbon structure and ash properties of solid fuels into molten ... Carbon dissolution from solid fuels used in a COREX gasifier was investigated in a high-temperature furnace to investigate the influences of temperature, carbon structure and ash properties of solid fuels into molten iron on carbon dissolution behavior. The results showed that the final carbon content of molten iron and dissolution reaction rate of carbon increased as the temperature increased. However, the dissolution behavior of different solid fuels varied with their properties. At the same temperature, the dissolution reaction rate of solid fuel from high to low was coke, semi-coke and lump coal. The apparent reaction rate constants of solid fuel were calculated using the piecewise fitting method based on the experimental data. The analyzed results showed that the dissolution rates of solid fuels had a good correlation with their microcrystalline structures. Moreover, the carbon crystallite structures of solid fuels used in COREX had greater influence on dissolution behavior than their ash properties. 展开更多
关键词 Solid fuel COREX Dissolution behavior TEMPERATURE Carbon structure ash property
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部