The cooperation effects of GA3, IAA and uniconazole-P were studied on the gravitropism and wood formation in Fraxinus mandshurica Rupr. var.japonica Maxim. Seedlings using traditional paraffin section technology. Our ...The cooperation effects of GA3, IAA and uniconazole-P were studied on the gravitropism and wood formation in Fraxinus mandshurica Rupr. var.japonica Maxim. Seedlings using traditional paraffin section technology. Our results are: (1) Gravitropism of stems was strongly inhibited only in B, whereas promoted significantly in D, E, F, H and I treatments; (2) Xylem formation was increased on both sides in H, I and J treatments and on the lower side in E and F which also show the synergistic effect; (3) On the radial direction, cell wall thickness was enhanced on the upper side, whereas decreased on the lower side in C, and was also significantly promoted on the upper in E, G, H, I and J treatments. On the tangential direction, cell wall thickness was increased on the lower side in E, H, I and J treatments respectively; (4) Gelatinous layer of wood fibers was observed on the upper side in all treatments. These results suggest that both GA3 and IAA affected negative gravitropism and wood formation significantly. However, appliedor unapplited-uniconazole-P does not affect G-layer formation, indicating GA does not play the key role on G-layer formation, and ratio of GA3/IAA or IAA may be more important in regulating G-layer formation.展开更多
We investigated the role of GA3, uniconazole-P and IAA on tension wood formation, in particular the vessel features, in Fraxinu smandshurica seedlings. Ninety seedlings were used and treated with applications of GA3 a...We investigated the role of GA3, uniconazole-P and IAA on tension wood formation, in particular the vessel features, in Fraxinu smandshurica seedlings. Ninety seedlings were used and treated with applications of GA3 and/or IAA to the apical bud of the stem using a micropipette. Applications of GA3 or GA3 plus IAA with uniconazole-P strongly increased cell number of tension wood in comparison to that of no-uniconazole-P-applied, indicated that GA3 is more efficient than IAA on xylem cell production. Wood quality was also regulated by relative concentration ratio of GA3 to lAA, because of the vessel elements differentiation, density and size were controlled by GA3 and/or IAA on the different levels. These results suggested that the relative concentration ratio of GA3 to IAA and interactions of them are essential in regulating both wood quality and wood quantity, and tension wood formation in this species.展开更多
The spatial distribution of standing fine roots in tree rows of different species in a 12-year-old mixed stand of ash (Fraxinus mandshurica Rupr.) and larch (Larix olgensis Henry) was studied by soil core sampling in ...The spatial distribution of standing fine roots in tree rows of different species in a 12-year-old mixed stand of ash (Fraxinus mandshurica Rupr.) and larch (Larix olgensis Henry) was studied by soil core sampling in early spring, 2001. It is found that ash and larch differ greatly in their belowground biomass distribution. Ash has much higher fine root biomass density in the soil than larch at stand level (with the max value of 4442.3 vs. 2234.9 gm-3). Both tree species deployed more fine roots in their neighboring zone, suggesting a less intensive competition between roots of the two species. Both fine root biomass density and root length density of ash in the zone between larch tree rows are greater than that of larch in zone between ash tree rows, indicating that ash is more powerful than larch in belowground competition. The spatial distribution feature of roots favors the growth of ash in the mixed stand.展开更多
In the present study, we Investigated the role of glbberelllc acid (GA3) and Indole acetic acid (IAA) In the gravity response of stems and tension wood formation using two-year-old stems of Fraxinus mandshurica Ru...In the present study, we Investigated the role of glbberelllc acid (GA3) and Indole acetic acid (IAA) In the gravity response of stems and tension wood formation using two-year-old stems of Fraxinus mandshurica Rupr. var. Japonica Maxim seedlings. Forty-five seedlings were used and divided Into nine groups that Included five seedlings In each group. Seedlings were treated with applications of GA3 alone at concentrations of 2.89×10^-8 and 2.89×10^-7 μmol/L, IAA alone at concentrations of 5.71×10^-8 and 5.71×10^-7 μmol/L, or their combination to the apical bud of the stem using a mlcroplpette. Seedlings were positioned horizontally after the first treatment. The same treatments were repeated six times per week. At the end of the experiment, all seedlings were harvested. Then, stem segments were cut under a light microscope. Application of exogenous GA3 at the higher concentration stimulated the upward bending of stems, whereas exogenous IAA had no effect. A synergistic effect of GA3 and IAA on upward stem bending was observed following application of the two combinations of GA3 and IAA. Moreover, application of exogenous GA3 at the higher dose stimulated wood formation on both the upper and lower sides of the stems, whereas the mixture of GA3 and IAA had a synerglstic effect on wood formation In horizontal stems. Application of exogenous IAA alone at the lower concentration (5.71×10^-8 μmol/L) or application of a mixture of the higher concentrations of GA3 (2.89×10^-7 μmol/L) and IAA (5.71×10^-7 μmol/L) Inhibited the development of gelatinous fibers (the G-layer) of tension wood on the upper side of the horizontal stems. The differentiation of gelatinous fibers of tension wood was not Inhibited by GA3 when It was applied alone, whereas the development of the gelatinous fibers of tension wood was strongly affected by the application of IAA. The findings of the present study suggest that the development of the G-layer Is not related to the dose of GA3, but needs a relatively lower concentration of IAA.展开更多
GA3 and GA4 (gibberellins) play an important role in controlling gravitropism and tension wood formation in woody angiosperms. In order to improve our understanding of the role of GA3 and GA4 on xylem cell formation...GA3 and GA4 (gibberellins) play an important role in controlling gravitropism and tension wood formation in woody angiosperms. In order to improve our understanding of the role of GA3 and GA4 on xylem cell formation and the G-layer, we studied the effect of GA3 and GA4 and uniconazole-P, which is an inhibitor of GA biosynthesis, on tension wood formation by gravity in Fraxinus mandshurica Rupr. var. japonica Maxim. seedlings. Forty seedlings were divided into two groups; one group was placed upright and the other tilted. Each group was further divided into four sub-groups subjected to the following treatments: 3.43 x 10-9 lunol acetone as control, 5.78 x 10-8 lunol gibberellic acid (GA3), 6.21 x 10-8 lunol GA4, and 6.86 x 10-8 lunol uniconazole-P. During the experimental period, GAs-treated seedlings exhibited negative gravitropism, whereas application of uniconazole-P inhibited negative gravitropic stem bending. GA3 and GA4 promoted wood fibers that possessed a gelatinous layer on the upper side, whereas uniconazole-P inhibited wood formation but did not inhibit the differentiation of the gelatinous layer in wood fibers on the upper side. These results suggest that: (i) both the formation of gelatinous fibers and the quantity of xylem production are important for the negative gravitropism in horizontally-positioned seedlings; (ii) GA3 and GA4 affect wood production more than differentiation of the gelatinous layer in wood fibers; G-layer development may be regulated by other hormones via the indirect-role of GA3 and GA4 in horizontally-positioned F. mandshurica seedlings rather than the direct effect of GAs; and (iii) the mechanism for upward wood stem bending is different to the newly developed shoot bending in reaction to gravity in this species.展开更多
The effects of ethylene on tension wood formation were studied in 3-year-old Fraxinus mandshurica Rupr. var. japonica Maxim. seedlings in two separate experiments. In experiment 1, ethylene evolution of buds and stems...The effects of ethylene on tension wood formation were studied in 3-year-old Fraxinus mandshurica Rupr. var. japonica Maxim. seedlings in two separate experiments. In experiment 1, ethylene evolution of buds and stems was measured using gas chromatography after 0, 2, 4, 7, 14, and 21 d of treatment; in experiment 2, both aminoethoxyvinylglycine (AVG) and AgNO3 were applied to the horizontally-placed stems, and the cell numbers on sites of applications were measured after 40 d. Ethylene evolution from buds was found to be much greater in tilted seedlings than in upright ones. The cell numbers of wood fibers in shoots and 1-year-old stems were reduced in treatments with 12.5×10^-7μmol/L AVG, 12.5×10^-8μmol/L AVG, and 11.8×10^-8μmol/Lmol/L AgNO3; whereas the horizontal and vertical diameters were reduced by treatment of 12.5×10^-7μmol/L AVG. Ethylene evolutions of shoots and 1-year-old stems were inhibited greatly in comparison with the control by applying 12.5×10^-7μmol/L AVG. The formation of a gelatinous layer of wood fibers was affected by neither AVG nor AgNO3 application. These results suggest that ethylene regulates the quantity of wood production, but does not affect G-layer formation in F. mandshurica Rupr. var.japonica Maxim. seedlings.展开更多
The color change of ash wood(Fraxinus mandshurica)before and after high temperature heat treatment were investigated with WSC-S color difference meter in this paper.The results showed that:the color of treated wood is...The color change of ash wood(Fraxinus mandshurica)before and after high temperature heat treatment were investigated with WSC-S color difference meter in this paper.The results showed that:the color of treated wood is affected by the processing temperature,the higher the temperature,the darker the appearance,moreover,the change in L component can be used for quantitative analysis on color change.The color of treated ash wood by suitable processing temperature could be simulated to some valuable wood,for example,teak wood,some rosewood species,etc.The color of treated wood could be well replicated from laboratory scale experiments to commercial scale production.展开更多
基金This research was supported by the scholarship from the Japanese Ministry of Education (No. 07456073), Scientific Research Foundation for the Returned Oversea Chinese Scholars, State Education Ministry of China, Natural Science Foundation of Tianjin, China (No. 07JCYBJCI2400 and No. 07JCYBJCI2500) and National Key Basic Research Plan Proiect (No. 2007CB 106802).
文摘The cooperation effects of GA3, IAA and uniconazole-P were studied on the gravitropism and wood formation in Fraxinus mandshurica Rupr. var.japonica Maxim. Seedlings using traditional paraffin section technology. Our results are: (1) Gravitropism of stems was strongly inhibited only in B, whereas promoted significantly in D, E, F, H and I treatments; (2) Xylem formation was increased on both sides in H, I and J treatments and on the lower side in E and F which also show the synergistic effect; (3) On the radial direction, cell wall thickness was enhanced on the upper side, whereas decreased on the lower side in C, and was also significantly promoted on the upper in E, G, H, I and J treatments. On the tangential direction, cell wall thickness was increased on the lower side in E, H, I and J treatments respectively; (4) Gelatinous layer of wood fibers was observed on the upper side in all treatments. These results suggest that both GA3 and IAA affected negative gravitropism and wood formation significantly. However, appliedor unapplited-uniconazole-P does not affect G-layer formation, indicating GA does not play the key role on G-layer formation, and ratio of GA3/IAA or IAA may be more important in regulating G-layer formation.
文摘We investigated the role of GA3, uniconazole-P and IAA on tension wood formation, in particular the vessel features, in Fraxinu smandshurica seedlings. Ninety seedlings were used and treated with applications of GA3 and/or IAA to the apical bud of the stem using a micropipette. Applications of GA3 or GA3 plus IAA with uniconazole-P strongly increased cell number of tension wood in comparison to that of no-uniconazole-P-applied, indicated that GA3 is more efficient than IAA on xylem cell production. Wood quality was also regulated by relative concentration ratio of GA3 to lAA, because of the vessel elements differentiation, density and size were controlled by GA3 and/or IAA on the different levels. These results suggested that the relative concentration ratio of GA3 to IAA and interactions of them are essential in regulating both wood quality and wood quantity, and tension wood formation in this species.
基金This study was supported by National Natural Science Foundation of China (Grant No. 30130160) and the Quick Response of Basic Research Supporting Program (Grant No.2102)
文摘The spatial distribution of standing fine roots in tree rows of different species in a 12-year-old mixed stand of ash (Fraxinus mandshurica Rupr.) and larch (Larix olgensis Henry) was studied by soil core sampling in early spring, 2001. It is found that ash and larch differ greatly in their belowground biomass distribution. Ash has much higher fine root biomass density in the soil than larch at stand level (with the max value of 4442.3 vs. 2234.9 gm-3). Both tree species deployed more fine roots in their neighboring zone, suggesting a less intensive competition between roots of the two species. Both fine root biomass density and root length density of ash in the zone between larch tree rows are greater than that of larch in zone between ash tree rows, indicating that ash is more powerful than larch in belowground competition. The spatial distribution feature of roots favors the growth of ash in the mixed stand.
文摘In the present study, we Investigated the role of glbberelllc acid (GA3) and Indole acetic acid (IAA) In the gravity response of stems and tension wood formation using two-year-old stems of Fraxinus mandshurica Rupr. var. Japonica Maxim seedlings. Forty-five seedlings were used and divided Into nine groups that Included five seedlings In each group. Seedlings were treated with applications of GA3 alone at concentrations of 2.89×10^-8 and 2.89×10^-7 μmol/L, IAA alone at concentrations of 5.71×10^-8 and 5.71×10^-7 μmol/L, or their combination to the apical bud of the stem using a mlcroplpette. Seedlings were positioned horizontally after the first treatment. The same treatments were repeated six times per week. At the end of the experiment, all seedlings were harvested. Then, stem segments were cut under a light microscope. Application of exogenous GA3 at the higher concentration stimulated the upward bending of stems, whereas exogenous IAA had no effect. A synergistic effect of GA3 and IAA on upward stem bending was observed following application of the two combinations of GA3 and IAA. Moreover, application of exogenous GA3 at the higher dose stimulated wood formation on both the upper and lower sides of the stems, whereas the mixture of GA3 and IAA had a synerglstic effect on wood formation In horizontal stems. Application of exogenous IAA alone at the lower concentration (5.71×10^-8 μmol/L) or application of a mixture of the higher concentrations of GA3 (2.89×10^-7 μmol/L) and IAA (5.71×10^-7 μmol/L) Inhibited the development of gelatinous fibers (the G-layer) of tension wood on the upper side of the horizontal stems. The differentiation of gelatinous fibers of tension wood was not Inhibited by GA3 when It was applied alone, whereas the development of the gelatinous fibers of tension wood was strongly affected by the application of IAA. The findings of the present study suggest that the development of the G-layer Is not related to the dose of GA3, but needs a relatively lower concentration of IAA.
基金Supported by a Scholarship from the Japanese Ministry of Education(07456073)Scientific Research Foundation for the Returned Overseas Chinese Scholars.
文摘GA3 and GA4 (gibberellins) play an important role in controlling gravitropism and tension wood formation in woody angiosperms. In order to improve our understanding of the role of GA3 and GA4 on xylem cell formation and the G-layer, we studied the effect of GA3 and GA4 and uniconazole-P, which is an inhibitor of GA biosynthesis, on tension wood formation by gravity in Fraxinus mandshurica Rupr. var. japonica Maxim. seedlings. Forty seedlings were divided into two groups; one group was placed upright and the other tilted. Each group was further divided into four sub-groups subjected to the following treatments: 3.43 x 10-9 lunol acetone as control, 5.78 x 10-8 lunol gibberellic acid (GA3), 6.21 x 10-8 lunol GA4, and 6.86 x 10-8 lunol uniconazole-P. During the experimental period, GAs-treated seedlings exhibited negative gravitropism, whereas application of uniconazole-P inhibited negative gravitropic stem bending. GA3 and GA4 promoted wood fibers that possessed a gelatinous layer on the upper side, whereas uniconazole-P inhibited wood formation but did not inhibit the differentiation of the gelatinous layer in wood fibers on the upper side. These results suggest that: (i) both the formation of gelatinous fibers and the quantity of xylem production are important for the negative gravitropism in horizontally-positioned seedlings; (ii) GA3 and GA4 affect wood production more than differentiation of the gelatinous layer in wood fibers; G-layer development may be regulated by other hormones via the indirect-role of GA3 and GA4 in horizontally-positioned F. mandshurica seedlings rather than the direct effect of GAs; and (iii) the mechanism for upward wood stem bending is different to the newly developed shoot bending in reaction to gravity in this species.
基金Supported by a scholarship from the Japanese Ministry of Education(07456073)Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry of China,Natural Science Foundation of Tianjin,China (07JCYBJC12400 and 07JCYBJC12500)State Key Basic Research and Development Plan of China (2007CB106802)
文摘The effects of ethylene on tension wood formation were studied in 3-year-old Fraxinus mandshurica Rupr. var. japonica Maxim. seedlings in two separate experiments. In experiment 1, ethylene evolution of buds and stems was measured using gas chromatography after 0, 2, 4, 7, 14, and 21 d of treatment; in experiment 2, both aminoethoxyvinylglycine (AVG) and AgNO3 were applied to the horizontally-placed stems, and the cell numbers on sites of applications were measured after 40 d. Ethylene evolution from buds was found to be much greater in tilted seedlings than in upright ones. The cell numbers of wood fibers in shoots and 1-year-old stems were reduced in treatments with 12.5×10^-7μmol/L AVG, 12.5×10^-8μmol/L AVG, and 11.8×10^-8μmol/Lmol/L AgNO3; whereas the horizontal and vertical diameters were reduced by treatment of 12.5×10^-7μmol/L AVG. Ethylene evolutions of shoots and 1-year-old stems were inhibited greatly in comparison with the control by applying 12.5×10^-7μmol/L AVG. The formation of a gelatinous layer of wood fibers was affected by neither AVG nor AgNO3 application. These results suggest that ethylene regulates the quantity of wood production, but does not affect G-layer formation in F. mandshurica Rupr. var.japonica Maxim. seedlings.
文摘The color change of ash wood(Fraxinus mandshurica)before and after high temperature heat treatment were investigated with WSC-S color difference meter in this paper.The results showed that:the color of treated wood is affected by the processing temperature,the higher the temperature,the darker the appearance,moreover,the change in L component can be used for quantitative analysis on color change.The color of treated ash wood by suitable processing temperature could be simulated to some valuable wood,for example,teak wood,some rosewood species,etc.The color of treated wood could be well replicated from laboratory scale experiments to commercial scale production.