The COVID-19 pandemic has a significant impact on the global economy and health.While the pandemic continues to cause casualties in millions,many countries have gone under lockdown.During this period,people have to st...The COVID-19 pandemic has a significant impact on the global economy and health.While the pandemic continues to cause casualties in millions,many countries have gone under lockdown.During this period,people have to stay within walls and become more addicted towards social networks.They express their emotions and sympathy via these online platforms.Thus,popular social media(Twitter and Facebook)have become rich sources of information for Opinion Mining and Sentiment Analysis on COVID-19-related issues.We have used Aspect Based Sentiment Analysis to anticipate the polarity of public opinion underlying different aspects from Twitter during lockdown and stepwise unlock phases.The goal of this study is to find the feelings of Indians about the lockdown initiative taken by the Government of India to stop the spread of Coronavirus.India-specific COVID-19 tweets have been annotated,for analysing the sentiment of common public.To classify the Twitter data set a deep learning model has been proposed which has achieved accuracies of 82.35%for Lockdown and 83.33%for Unlock data set.The suggested method outperforms many of the contemporary approaches(long shortterm memory,Bi-directional long short-term memory,Gated Recurrent Unit etc.).This study highlights the public sentiment on lockdown and stepwise unlocks,imposed by the Indian Government on various aspects during the Corona outburst.展开更多
Sentiment analysis is a fine‐grained analysis task that aims to identify the sentiment polarity of a specified sentence.Existing methods in Chinese sentiment analysis tasks only consider sentiment features from a sin...Sentiment analysis is a fine‐grained analysis task that aims to identify the sentiment polarity of a specified sentence.Existing methods in Chinese sentiment analysis tasks only consider sentiment features from a single pole and scale and thus cannot fully exploit and utilise sentiment feature information,making their performance less than ideal.To resolve the problem,the authors propose a new method,GP‐FMLNet,that integrates both glyph and phonetic information and design a novel feature matrix learning process for phonetic features with which to model words that have the same pinyin information but different glyph information.Our method solves the problem of misspelling words influencing sentiment polarity prediction results.Specifically,the authors iteratively mine character,glyph,and pinyin features from the input comments sentences.Then,the authors use soft attention and matrix compound modules to model the phonetic features,which empowers their model to keep on zeroing in on the dynamic‐setting words in various positions and to dispense with the impacts of the deceptive‐setting ones.Ex-periments on six public datasets prove that the proposed model fully utilises the glyph and phonetic information and improves on the performance of existing Chinese senti-ment analysis algorithms.展开更多
With the advancements in internet facilities,people are more inclined towards the use of online services.The service providers shelve their items for e-users.These users post their feedbacks,reviews,ratings,etc.after ...With the advancements in internet facilities,people are more inclined towards the use of online services.The service providers shelve their items for e-users.These users post their feedbacks,reviews,ratings,etc.after the use of the item.The enormous increase in these reviews has raised the need for an automated system to analyze these reviews to rate these items.Sentiment Analysis(SA)is a technique that performs such decision analysis.This research targets the ranking and rating through sentiment analysis of these reviews,on different aspects.As a case study,Songs are opted to design and test the decision model.Different aspects of songs namely music,lyrics,song,voice and video are picked.For the reason,reviews of 20 songs are scraped from YouTube,pre-processed and formed a dataset.Different machine learning algorithms—Naïve Bayes(NB),Gradient Boost Tree,Logistic Regression LR,K-Nearest Neighbors(KNN)and Artificial Neural Network(ANN)are applied.ANN performed the best with 74.99%accuracy.Results are validated using K-Fold.展开更多
Distribution patterns of plant species are believed to be impacted by small-scale habitat heterogeneity. However, there have been few comparative studies examining how woody vegetation composition and diversity varies...Distribution patterns of plant species are believed to be impacted by small-scale habitat heterogeneity. However, there have been few comparative studies examining how woody vegetation composition and diversity varies with aspects of different orientations in the Trans-Himalayan region at a local scale. Here, we examined the effects of incoming solar radiation on variation in woody species composition and compared the diversity between the northeast- and southwest-facing slopes in a Trans-Himalayan valley of Nepal. We also examined the implicit interactions between slope orientation and land use in determining the compositional variations between the slopes. We selected two pairs of northeast- and southwest-facing slopes where the first pair has a similar land use and differs in exposure only(Pisang site) while the other pair has clear differences in land use in addition to slope exposure(Braka site). In each site, we sampled 72 plots(36 on each slope) in which the presence and absence of woody species, environmental variables, and disturbance were recorded. Correspondence Analysis(CA) results suggested that the woody species composition significantly varied between northeast- and southwest-facing slopes at both sites, and was significantly correlated with measured environmental variables such as radiation index, altitude, and canopy openness. In the Braka site,mean alpha diversity was significantly higher on southwest-facing slopes. In contrast, beta diversity and gamma diversity were greater on northeast-facing slopes at both sites. Our results suggest that topographic variables(e.g., radiation index) affect species composition between the slopes, likely due to their influence on small scale abiotic environmental variables. However, the effects of land use, such as livestock browsing/grazing may interact with the effects of slope exposure, effectively reducing differences in species composition within slopes but enhancing the differences in beta diversity between contrasting slopes in the Braka. We conclude that slope orientation and land use are important factors in structuring the woody species composition and diversity in the arid Trans-Himalayan region. We suggest that both environmental and land use variables should be taken into consideration in future studies on plant community structure along the cultural landscapes.展开更多
Aspect-Based Sentiment Analysis(ABSA)on Arabic corpus has become an active research topic in recent days.ABSA refers to a fine-grained Sentiment Analysis(SA)task that focuses on the extraction of the conferred aspects...Aspect-Based Sentiment Analysis(ABSA)on Arabic corpus has become an active research topic in recent days.ABSA refers to a fine-grained Sentiment Analysis(SA)task that focuses on the extraction of the conferred aspects and the identification of respective sentiment polarity from the provided text.Most of the prevailing Arabic ABSA techniques heavily depend upon dreary feature-engineering and pre-processing tasks and utilize external sources such as lexicons.In literature,concerning the Arabic language text analysis,the authors made use of regular Machine Learning(ML)techniques that rely on a group of rare sources and tools.These sources were used for processing and analyzing the Arabic language content like lexicons.However,an important challenge in this domain is the unavailability of sufficient and reliable resources.In this background,the current study introduces a new Battle Royale Optimization with Fuzzy Deep Learning for Arabic Aspect Based Sentiment Classification(BROFDL-AASC)technique.The aim of the presented BROFDL-AASC model is to detect and classify the sentiments in the Arabic language.In the presented BROFDL-AASC model,data pre-processing is performed at first to convert the input data into a useful format.Besides,the BROFDL-AASC model includes Discriminative Fuzzy-based Restricted Boltzmann Machine(DFRBM)model for the identification and categorization of sentiments.Furthermore,the BRO algorithm is exploited for optimal fine-tuning of the hyperparameters related to the FBRBM model.This scenario establishes the novelty of current study.The performance of the proposed BROFDL-AASC model was validated and the outcomes demonstrate the supremacy of BROFDL-AASC model over other existing models.展开更多
Aspect category detection is one challenging subtask of aspect based sentiment analysis, which categorizes a review sentence into a set of predefined aspect categories. Most existing methods regard the aspect category...Aspect category detection is one challenging subtask of aspect based sentiment analysis, which categorizes a review sentence into a set of predefined aspect categories. Most existing methods regard the aspect category detection as a flat classification problem. However, aspect categories are inter-related, and they are usually organized with a hierarchical tree structure. To leverage the structure information, this paper proposes a hierarchical multi-label classification model to detect aspect categories and uses a graph enhanced transformer network to integrate label dependency information into prediction features. Experiments have been conducted on four widely-used benchmark datasets, showing that the proposed model outperforms all strong baselines.展开更多
Identifying composite crosscutting concerns(CCs) is a research task and challenge of aspect mining.In this paper,we propose a scatter-based graph clustering approach to identify composite CCs.Inspired by the state-o...Identifying composite crosscutting concerns(CCs) is a research task and challenge of aspect mining.In this paper,we propose a scatter-based graph clustering approach to identify composite CCs.Inspired by the state-of-the-art link analysis tech-niques,we propose a two-state model to approximate how CCs tangle with core modules.According to this model,we obtain scatter and centralization scores for each program element.Espe-cially,the scatter scores are adopted to select CC seeds.Further-more,to identify composite CCs,we adopt a novel similarity measurement and develop an undirected graph clustering to group these seeds.Finally,we compare it with the previous work and illustrate its effectiveness in identifying composite CCs.展开更多
文摘The COVID-19 pandemic has a significant impact on the global economy and health.While the pandemic continues to cause casualties in millions,many countries have gone under lockdown.During this period,people have to stay within walls and become more addicted towards social networks.They express their emotions and sympathy via these online platforms.Thus,popular social media(Twitter and Facebook)have become rich sources of information for Opinion Mining and Sentiment Analysis on COVID-19-related issues.We have used Aspect Based Sentiment Analysis to anticipate the polarity of public opinion underlying different aspects from Twitter during lockdown and stepwise unlock phases.The goal of this study is to find the feelings of Indians about the lockdown initiative taken by the Government of India to stop the spread of Coronavirus.India-specific COVID-19 tweets have been annotated,for analysing the sentiment of common public.To classify the Twitter data set a deep learning model has been proposed which has achieved accuracies of 82.35%for Lockdown and 83.33%for Unlock data set.The suggested method outperforms many of the contemporary approaches(long shortterm memory,Bi-directional long short-term memory,Gated Recurrent Unit etc.).This study highlights the public sentiment on lockdown and stepwise unlocks,imposed by the Indian Government on various aspects during the Corona outburst.
基金Science and Technology Innovation 2030‐“New Generation Artificial Intelligence”major project,Grant/Award Number:2020AAA0108703。
文摘Sentiment analysis is a fine‐grained analysis task that aims to identify the sentiment polarity of a specified sentence.Existing methods in Chinese sentiment analysis tasks only consider sentiment features from a single pole and scale and thus cannot fully exploit and utilise sentiment feature information,making their performance less than ideal.To resolve the problem,the authors propose a new method,GP‐FMLNet,that integrates both glyph and phonetic information and design a novel feature matrix learning process for phonetic features with which to model words that have the same pinyin information but different glyph information.Our method solves the problem of misspelling words influencing sentiment polarity prediction results.Specifically,the authors iteratively mine character,glyph,and pinyin features from the input comments sentences.Then,the authors use soft attention and matrix compound modules to model the phonetic features,which empowers their model to keep on zeroing in on the dynamic‐setting words in various positions and to dispense with the impacts of the deceptive‐setting ones.Ex-periments on six public datasets prove that the proposed model fully utilises the glyph and phonetic information and improves on the performance of existing Chinese senti-ment analysis algorithms.
文摘With the advancements in internet facilities,people are more inclined towards the use of online services.The service providers shelve their items for e-users.These users post their feedbacks,reviews,ratings,etc.after the use of the item.The enormous increase in these reviews has raised the need for an automated system to analyze these reviews to rate these items.Sentiment Analysis(SA)is a technique that performs such decision analysis.This research targets the ranking and rating through sentiment analysis of these reviews,on different aspects.As a case study,Songs are opted to design and test the decision model.Different aspects of songs namely music,lyrics,song,voice and video are picked.For the reason,reviews of 20 songs are scraped from YouTube,pre-processed and formed a dataset.Different machine learning algorithms—Naïve Bayes(NB),Gradient Boost Tree,Logistic Regression LR,K-Nearest Neighbors(KNN)and Artificial Neural Network(ANN)are applied.ANN performed the best with 74.99%accuracy.Results are validated using K-Fold.
基金Annapurna Conservation Area Project (ACAP)Norwegian State Educational Loan Fund (Lnekassen)+2 种基金Faculty of Mathematics and Natural Sciences,University of Bergen for financingfunded by Norwegian Research Council(project no.148910/730)supported by The Norwegian Council for Higher Education Programme for Development Research and Education(NUFU Project ID:PRO 04/2002)
文摘Distribution patterns of plant species are believed to be impacted by small-scale habitat heterogeneity. However, there have been few comparative studies examining how woody vegetation composition and diversity varies with aspects of different orientations in the Trans-Himalayan region at a local scale. Here, we examined the effects of incoming solar radiation on variation in woody species composition and compared the diversity between the northeast- and southwest-facing slopes in a Trans-Himalayan valley of Nepal. We also examined the implicit interactions between slope orientation and land use in determining the compositional variations between the slopes. We selected two pairs of northeast- and southwest-facing slopes where the first pair has a similar land use and differs in exposure only(Pisang site) while the other pair has clear differences in land use in addition to slope exposure(Braka site). In each site, we sampled 72 plots(36 on each slope) in which the presence and absence of woody species, environmental variables, and disturbance were recorded. Correspondence Analysis(CA) results suggested that the woody species composition significantly varied between northeast- and southwest-facing slopes at both sites, and was significantly correlated with measured environmental variables such as radiation index, altitude, and canopy openness. In the Braka site,mean alpha diversity was significantly higher on southwest-facing slopes. In contrast, beta diversity and gamma diversity were greater on northeast-facing slopes at both sites. Our results suggest that topographic variables(e.g., radiation index) affect species composition between the slopes, likely due to their influence on small scale abiotic environmental variables. However, the effects of land use, such as livestock browsing/grazing may interact with the effects of slope exposure, effectively reducing differences in species composition within slopes but enhancing the differences in beta diversity between contrasting slopes in the Braka. We conclude that slope orientation and land use are important factors in structuring the woody species composition and diversity in the arid Trans-Himalayan region. We suggest that both environmental and land use variables should be taken into consideration in future studies on plant community structure along the cultural landscapes.
基金Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2022R281)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:22UQU4340237DSR52。
文摘Aspect-Based Sentiment Analysis(ABSA)on Arabic corpus has become an active research topic in recent days.ABSA refers to a fine-grained Sentiment Analysis(SA)task that focuses on the extraction of the conferred aspects and the identification of respective sentiment polarity from the provided text.Most of the prevailing Arabic ABSA techniques heavily depend upon dreary feature-engineering and pre-processing tasks and utilize external sources such as lexicons.In literature,concerning the Arabic language text analysis,the authors made use of regular Machine Learning(ML)techniques that rely on a group of rare sources and tools.These sources were used for processing and analyzing the Arabic language content like lexicons.However,an important challenge in this domain is the unavailability of sufficient and reliable resources.In this background,the current study introduces a new Battle Royale Optimization with Fuzzy Deep Learning for Arabic Aspect Based Sentiment Classification(BROFDL-AASC)technique.The aim of the presented BROFDL-AASC model is to detect and classify the sentiments in the Arabic language.In the presented BROFDL-AASC model,data pre-processing is performed at first to convert the input data into a useful format.Besides,the BROFDL-AASC model includes Discriminative Fuzzy-based Restricted Boltzmann Machine(DFRBM)model for the identification and categorization of sentiments.Furthermore,the BRO algorithm is exploited for optimal fine-tuning of the hyperparameters related to the FBRBM model.This scenario establishes the novelty of current study.The performance of the proposed BROFDL-AASC model was validated and the outcomes demonstrate the supremacy of BROFDL-AASC model over other existing models.
基金supported by the National Natural Science Foundation of China under Grant No.62036001.
文摘Aspect category detection is one challenging subtask of aspect based sentiment analysis, which categorizes a review sentence into a set of predefined aspect categories. Most existing methods regard the aspect category detection as a flat classification problem. However, aspect categories are inter-related, and they are usually organized with a hierarchical tree structure. To leverage the structure information, this paper proposes a hierarchical multi-label classification model to detect aspect categories and uses a graph enhanced transformer network to integrate label dependency information into prediction features. Experiments have been conducted on four widely-used benchmark datasets, showing that the proposed model outperforms all strong baselines.
基金Supported by the National Pre-research Project (513150601)
文摘Identifying composite crosscutting concerns(CCs) is a research task and challenge of aspect mining.In this paper,we propose a scatter-based graph clustering approach to identify composite CCs.Inspired by the state-of-the-art link analysis tech-niques,we propose a two-state model to approximate how CCs tangle with core modules.According to this model,we obtain scatter and centralization scores for each program element.Espe-cially,the scatter scores are adopted to select CC seeds.Further-more,to identify composite CCs,we adopt a novel similarity measurement and develop an undirected graph clustering to group these seeds.Finally,we compare it with the previous work and illustrate its effectiveness in identifying composite CCs.