To promote the recycling of reclaimed asphalt pavement(RAP),epoxy resin was used to prepare the epoxy-recycled asphalt mixtures.The effect of epoxy resin on the properties of aged asphalt binder was investigated based...To promote the recycling of reclaimed asphalt pavement(RAP),epoxy resin was used to prepare the epoxy-recycled asphalt mixtures.The effect of epoxy resin on the properties of aged asphalt binder was investigated based on the tensile test,flexural creep test,and laser scanning confocal microscopy.The curing characteristics and the mechanical performance of recycled asphalt with different epoxy contents were explored.The results show that the low-temperature performance,ductility,and strength of the aged asphalt binder were significantly improved when the epoxy content reached 40%.The curing time of epoxy-recycled asphalt should be at least 4 d to ensure the formation of good internal spatial network structure.展开更多
Modifying agents 2,2-Bis(4-glycidyloxyphenyl)propane(2BPE)and dibutyl phthalate(DBP)were selected to enhance the compatibility.By using molecular simulation software(Materials Studio,MS),nine systems were constructed,...Modifying agents 2,2-Bis(4-glycidyloxyphenyl)propane(2BPE)and dibutyl phthalate(DBP)were selected to enhance the compatibility.By using molecular simulation software(Materials Studio,MS),nine systems were constructed,including molecular models of aged asphalt and WVO monomers with 2BPE and/or DBP.The solubility parameters,Flory-Huggins parameters,and interaction energies of these systems were calculated to determine the impact of 2BPE and DBP on the compatibility of WVO and aged asphalt.Results showed that the addition of 2BPE and DBP reduced the difference in the solubility parameters between WVO and aged asphalt,thus improving the compatibility between WVO and aged asphalt.Additionally,using a combination of 2BPE and DBP in both aged asphalt and rejuvenator was found to be more effective than using either 2BPE or DBP alone.Finally,it was determined that evaluating the compatibility of WVO and aged asphalt using Van der Waals potential and non-bonding energy as evaluation indicators was more accurate than using electrostatic potential energy.展开更多
Conventional repairing methods for asphalt pavement have some inconveniences,such as insufficient strength,and are typically time-consuming.To address these issues,this study proposes a new technological method to des...Conventional repairing methods for asphalt pavement have some inconveniences,such as insufficient strength,and are typically time-consuming.To address these issues,this study proposes a new technological method to design and prepare a high-performance assembled asphalt concrete block for fast repair of the potholes.A series of composite modified asphalt binders with 10%crumb rubber(CR)and different dosages(0%,1%,3%,5%)of polyurethane(PU)are examined to determine the optimized binder.Subsequently,the corresponding asphalt mixtures are prepared for further comparison and assessment of engineering properties,such as moistureinduced damage,high-temperature deformation,and low-temperature cracking characteristics.The test results show that PU can significantly improve the high-temperature performance and hardness of(crumb rubber modified asphalt)CRMA binder;3%PU contributes allowing the resistance of CRMA mixture to moisture-induced damage at higher levels,particularly under water whole immersion;as 3%PU is added,the high-temperature rutting deformation resistance of the CRMA mixture increases significantly,and the low-temperature anti-cracking properties are also improved slightly.Therefore,the innovatively designed high-quality assembled fast-repairing asphalt concrete block is recommended as an appropriate option for highway maintenance.展开更多
In order to study the anti-fatigue performance of RCA modified asphalt (RMA),the performance of RMA and 90#matrix asphalt with different modifier content were measured by asphalt penetration,ductility,softening point,...In order to study the anti-fatigue performance of RCA modified asphalt (RMA),the performance of RMA and 90#matrix asphalt with different modifier content were measured by asphalt penetration,ductility,softening point,Brookfield viscosity,rheological index,infrared spectrum and dielectric constant test.This paper discusses the changes of asphalt basic indexes,fatigue properties and asphalt components based on dielectric properties under different modifier contents,and analyzes the grey correlation degree between components and asphalt pavement performance indexes.The results show that the optimum content of RCA modifier is 16.7%of the asphalt quality according to the penetration,ductility,softening point,Brockfield viscosity,viscosity temperature curve and fatigue life.In the phase angle-strain curve,there is disorder in the latter part of the curve.According to the strain (ε_(d)) corresponding to the disorder point,a new fatigue failure criterion is proposed and proved.Based on the new asphalt fatigue failure criterion,the fatigue prediction model of asphalt mixture is improved,and the fatigue life predicted by the improved fatigue model is compared with the fatigue life obtained by four-point bending fatigue test.The results show that the proposed new asphalt fatigue failure criterion is reasonable,and the fatigue life predicted by the improved asphalt mixture fatigue prediction model is accurate.The research method of classifying asphalt components based on dielectric properties is simple and effective,and the components have a high correlation with the road performance of base asphalt and modified asphalt.展开更多
Aiming to analyze the damage mechanism of UTAO from the perspective of meso-mechanical mechanism using discrete element method(DEM),we conducted study of diseases problems of UTAO in several provinces in China,and fou...Aiming to analyze the damage mechanism of UTAO from the perspective of meso-mechanical mechanism using discrete element method(DEM),we conducted study of diseases problems of UTAO in several provinces in China,and found that aggregate spalling was one of the main disease types of UTAO.A discrete element model of UTAO pavement structure was constructed to explore the meso-mechanical mechanism of UTAO damage under the influence of layer thickness,gradation,and bonding modulus.The experimental results show that,as the thickness of UTAO decreasing,the maximum value and the mean value of the contact force between all aggregate particles gradually increase,which leads to aggregates more prone to spalling.Compared with OGFC-5 UTAO,AC-5 UTAO presents smaller maximum and average values of all contact forces,and the loading pressure in AC-5 UTAO is fully diffused in the lateral direction.In addition,the increment of pavement modulus strengthens the overall force of aggregate particles inside UTAO,resulting in aggregate particles peeling off more easily.The increase of bonding modulus changes the position where the maximum value of the tangential force appears,whereas has no effect on the normal force.展开更多
In this study,the regenerative effects of different regenerants on aged SBS-modified asphalt from different perspectives were investigated,including their conventional properties,viscoelastic behavior,creep-related pr...In this study,the regenerative effects of different regenerants on aged SBS-modified asphalt from different perspectives were investigated,including their conventional properties,viscoelastic behavior,creep-related properties,and micromorphology.Base oils composed of different proportions of aromatic and saturated hydrocarbons as well as the styrene-butadiene-styrene(SBS)restorer were used to prepare the regenerants.The results showed that the components of the base oil of the regenerant played a crucial role in determining the characteristics and performance of the recycled SBSmodified asphalt.Regenerants containing a high proportion of aromatics dissolved the hard segment in the SBS restorer,thereby delaying the effect of a reduction in the regenerants on the performance of the aged asphalts at a high temperature.Regenerants containing a high proportion of saturates dissolved the soft segment in the SBS restorer to enhance the lowtemperature performance of the recycled asphalts.In addition,the stress sensitivity of the recycled asphalts increased with the fraction of aromatics in the regenerant.As the aromatic content of the base oil components of the regenerants increased and their saturate content decreased,the state of dispersion of the SBS phase in the recycled SBS-modified asphalts improved.The optimal content of aromatics in the base oil of the regenerants should be set in the range of 33%to 47%to ensure the adequate performance of the recycled asphalts and a high efficiency of the SBS restorer.展开更多
The objective of this paper was to study low temperature crack resistance mechanism of steel slag asphalt mixture(SAM).Thermal stress restrained specimen test(TSRST)and three-point bending test were carried out to eva...The objective of this paper was to study low temperature crack resistance mechanism of steel slag asphalt mixture(SAM).Thermal stress restrained specimen test(TSRST)and three-point bending test were carried out to evaluate the low-temperature crack resistance of SAM and basalt asphalt mixture(BAM).Based on the digital image correlation technique(DIC),the strain field distribution and crack propagation of SAM were analyzed from the microscopic point of view,and a new index,crack length factor(C),was proposed to evaluate the crack resistance of the asphalt mixture.The crystal phase composition and microstructure of steel slag aggregate(SA)and basalt aggregate(BA)were studied by X-ray diffraction(XRD)and scanning electron microscopy(SEM)to explore the low-temperature crack resistance mechanism of SAM.Results show that the low-temperature crack resistance of SAM is better than that of BAM;SAM has good integrity and persistent elastic deformation,and its bending failure mode is a hysteretic quasi-brittle failure;The SA surface is evenly distributed with pores and has surface roughness.SA has the composition phase of alkaline aggregate-calcite(CaCO3),so it has good adhesion to asphalt,which reveals the mechanism of excellent low-temperature crack resistance of SAM.展开更多
An experimental investigation into the thermal conductivity of CF-SiC two-phase composite asphalt concrete is presented.The main objective of this study was to verify the possibility of using SiC powder instead of min...An experimental investigation into the thermal conductivity of CF-SiC two-phase composite asphalt concrete is presented.The main objective of this study was to verify the possibility of using SiC powder instead of mineral powder as the thermal conductive filler to prepare a new type of asphalt concrete and improve the efficiency of electrothermal snow and ice melting systems accordingly.The thermal conductivity of asphalt concrete prepared with different thermally conductive fillers was tested by a transient plane source method,and the related performances were measured.Then the temperature rise rate and surface temperature were studied through field heating tests.Finally,the actual ice melting efficiency of the thermally conductive asphalt concrete was evaluated using an effective electrothermal system.As shown by the experimental results,the composite made of SiC powder and carbon fiber has a high thermal conductivity.When SiC replaces mineral powder,the thermal conductivity of the asphalt mixture increases first and then decreases with the increase of carbon fiber content.In the present study,in particular,the thermal conductivity attained a peak when the carbon fiber content was 0.2%of the aggregate mass.展开更多
Traditional asphalt rejuvenators,like aromatic oil(AO),are known to be effective in improving the low-temperature properties and fatigue performances of aged SBS(styrene-butadiene-styrene)modified asphalt(SBSMA)binder...Traditional asphalt rejuvenators,like aromatic oil(AO),are known to be effective in improving the low-temperature properties and fatigue performances of aged SBS(styrene-butadiene-styrene)modified asphalt(SBSMA)binders and mixtures.However,these rejuvenators inevitably compromise their high-temperature properties and deformation resistances because they dilute asphalt binder but do not fix the damaged structures of aged SBS.In this study,a highly-active chemical called polymerized 4,4-diphenylmethane diisocyanate(PMDI)was used to assist the traditional AO asphalt rejuvenator.The physical and rheological characteristics of rejuvenated SBSMA binders and the moisture-induced damage and rut deformation performances of corresponding mixtures were comparatively evaluated.The results showed that the increasing proportion of AO compromises the hightemperature property and hardness of aged SBSMA binder,and an appropriate amount of PMDI works to compensate such losses;3%rejuvenator at mass ratio of AO:PMDI=70:30 can have a rejuvenated SBSMA binder with a high-temperature performance similar to that of fresh binder,approximately at 71.4°C;the use of AO can help reduce the viscosity of PMDI rejuvenated SBSMA binder for improving its workability;PMDI can help improve the resistance of AO rejuvenated SBSMA binder to deformation,especially at elevated temperatures,through its chemical reactions with aged SBS;moisture induction can enhance the resistance to damage of rejuvenated mixtures containing AO/PMDI or only PMDI;and the rejuvenator with a mass ratio of AO:PMDI=70:30 can lead the rejuvenated mixture to meet the application requirement,with a rut depth of only 2.973 mm,although more PMDI can result in a higher resistance of rejuvenated mixtures to high-temperature deformation.展开更多
To evaluate the regularity of resilient modulus for hot-mix asphalt(HMA)under large temperature fluctuations,back propagation(BP)neural network technology was used to analyze the continuous change of HMA resilient mod...To evaluate the regularity of resilient modulus for hot-mix asphalt(HMA)under large temperature fluctuations,back propagation(BP)neural network technology was used to analyze the continuous change of HMA resilient modulus.Firstly,based on the abundant data,the training model of HMA resilient modulus was established by using BP neural network technology.Subsequently,BP neural network prediction and regression analysis were performed,and the prediction model of HMA resilient modulus at different temperatures(50C to 60C)was obtained,which fully considered multi-factor and nonlinearity.Finally,the fitted theoretical model can be used to evaluate the HMA performance under the condition of large temperature fluctuations,and the rationality of theoretical model was verified by taking Harbin region as an example.It was found that the relationship between HMA resilient modulus and temperatures can be described by inverse tangent function.And the key parameters of theoretical model can be used to evaluate the continuous change characteristics of HMA resilient modulus with large temperature fluctuations.The results can further improve the HMA performance evaluation system and have certain theoretical value.展开更多
Recently, researchers in the road field are focusing on the development of green asphalt materials with loweremission of volatile organic compounds (VOCs). The characterization methodology of asphalt VOCs and theinflu...Recently, researchers in the road field are focusing on the development of green asphalt materials with loweremission of volatile organic compounds (VOCs). The characterization methodology of asphalt VOCs and theinfluencing factors on VOCs release have always been the basic issue of asphalt VOCs emission reduction research.Researchers have proposed a variety of asphalt VOCs characterization methodologies, which also have mutuallyirreplaceable characteristics. Asphalt VOCs volatilization is affected by many factors. In this study, asphalt VOCscharacterization methodologies were summarized, including their advantages, disadvantages, characteristics andapplicable requirements. Subsequently, the influencing factors of VOCs release, such as asphalt types and environment conditions, are summarized to provide theoretical support for the emission reduction research. Theclassification and mechanism of newly-development asphalt VOCs emission reduction materials are reviewed. Thereduction efficiencies are also compared to select better materials and put forward the improvement objective ofnew materials and new processes. In addition, the prospects about development of VOCs release mechanism ofasphalt materials during the full life cycle and feasibility research of high-efficiency composite emission reductionmaterials in the future were put forward.展开更多
The pressing demand for sustainable advancements in road infrastructure has catalyzed extensive research into environmentally conscious alternatives for the maintenance and restoration of asphalt concrete pavements.Th...The pressing demand for sustainable advancements in road infrastructure has catalyzed extensive research into environmentally conscious alternatives for the maintenance and restoration of asphalt concrete pavements.This paper offers a comprehensive review and analysis of bio-based rejuvenators as a promising avenue for enhancing the longevity and sustainability of asphalt.Through a multifaceted exploration,it delves into various aspects of this innovative approach.Providing a thorough overview of bio-based rejuvenators,the study highlights their renewable and environmentally friendly characteristics.It conducts an in-depth examination of a wide spectrum of bio-derived materials,including vegetable oils,waste-derived bio-products,and biopolymers,through a comprehensive survey.The paper evaluates how bio-based rejuvenators enhance aged asphalt binders and mixes,effectively mitigating the adverse impacts of aging.Furthermore,it investigates how these rejuvenators address environmental concerns by identifying compatibility issues,assessing long-term performance,and evaluating economic feasibility.Finally,the paper outlines potential advancements and research pathways aimed at optimizing the utilization of bio-based rejuvenators in asphalt concrete,thereby contributing to the sustainable evolution of road infrastructure.展开更多
To comprehensively assess the current state-of-art in asphalt foaming technology, the following four key aspectshave been reviewed systematically: foaming principles, test methods, evaluation indicators, and influenci...To comprehensively assess the current state-of-art in asphalt foaming technology, the following four key aspectshave been reviewed systematically: foaming principles, test methods, evaluation indicators, and influencing factors.Key findings reveal that asphalt foaming was primarily driven by the vaporization of water, with deteriorationprocesses including bubble collapse and liquid film drainage. However, the current understanding of asphaltfoaming principles remains limited, primarily due to difficulties in capturing and precisely measuring its microscopic behaviors during asphalt foaming process. Volume changes provided an intuitive means to evaluate theexpansion capacity of asphalt and its foaming stability. Bubble evolution characteristics of foamed asphalt offeredpromising insights into its foaming performance. Traditional ruler and stopwatch-based assessments were beingsuperseded by automated techniques like laser and ultrasonic ranging. Nevertheless, the current measuringequipment still lacks the capability to comprehensively evaluate the foaming effect of asphalt across various dimensions. Asphalt temperature and foaming water consumption significantly affected asphalt foaming performance, and the inclusion of foaming agents typically led to a notable increase in the half life of foamed asphalt.However, the interaction between foaming agents and asphalt, as well as the underlying mechanisms affecting thefoaming effect, are still unclear and require further exploration. Future research should primarily focus on thecorrelation between asphalt foaming effect and mixture performance, aiming to guide the practical engineeringapplication of foamed asphalt mixtures and enlarge the advantages of such low-emission and sustainable mixtures.展开更多
This study introduces and evaluates a novel artificial hummingbird algorithm-optimised boosted tree(AHAboosted)model for predicting the dynamic modulus(E*)of hot mix asphalt concrete.Using a substantial dataset from N...This study introduces and evaluates a novel artificial hummingbird algorithm-optimised boosted tree(AHAboosted)model for predicting the dynamic modulus(E*)of hot mix asphalt concrete.Using a substantial dataset from NCHRP Report-547,the model was trained and rigorously tested.Performance metrics,specifically RMSE,MAE,and R2,were employed to assess the model's predictive accuracy,robustness,and generalisability.When benchmarked against well-established models like support vector machines(SVM)and gaussian process regression(GPR),the AHA-boosted model demonstrated enhanced performance.It achieved R2 values of 0.997 in training and 0.974 in testing,using the traditional Witczak NCHRP 1-40D model inputs.Incorporating features such as test temperature,frequency,and asphalt content led to a 1.23%increase in the test R2,signifying an improvement in the model's accuracy.The study also explored feature importance and sensitivity through SHAP and permutation importance plots,highlighting binder complex modulus|G*|as a key predictor.Although the AHA-boosted model shows promise,a slight decrease in R2 from training to testing indicates a need for further validation.Overall,this study confirms the AHA-boosted model as a highly accurate and robust tool for predicting the dynamic modulus of hot mix asphalt concrete,making it a valuable asset for pavement engineering.展开更多
The goals of this study are to assess the viability of waste tire-derived char(WTDC)as a sustainable,low-cost fine aggregate surrogate material for asphalt mixtures and to develop the statistically coupled neural netw...The goals of this study are to assess the viability of waste tire-derived char(WTDC)as a sustainable,low-cost fine aggregate surrogate material for asphalt mixtures and to develop the statistically coupled neural network(SCNN)model for predicting volumetric and Marshall properties of asphalt mixtures modified with WTDC.The study is based on experimental data acquired from laboratory volumetric and Marshall properties testing on WTDCmodified asphalt mixtures(WTDC-MAM).The input variables comprised waste tire char content and asphalt binder content.The output variables comprised mixture unit weight,total voids,voids filled with asphalt,Marshall stability,and flow.Statistical coupled neural networks were utilized to predict the volumetric and Marshall properties of asphalt mixtures.For predictive modeling,the SCNN model is employed,incorporating a three-layer neural network and preprocessing techniques to enhance accuracy and reliability.The optimal network architecture,using the collected dataset,was a 2:6:5 structure,and the neural network was trained with 60%of the data,whereas the other 20%was used for cross-validation and testing respectively.The network employed a hyperbolic tangent(tanh)activation function and a feed-forward backpropagation.According to the results,the network model could accurately predict the volumetric and Marshall properties.The predicted accuracy of SCNN was found to be as high value>98%and low prediction errors for both volumetric and Marshall properties.This study demonstrates WTDC's potential as a low-cost,sustainable aggregate replacement.The SCNN-based predictive model proves its efficiency and versatility and promotes sustainable practices.展开更多
E-ticketing,which has been promoted by the Federal Highway Administration(FHWA)“every day counts”(EDC)initiative,utilizes software applications to digitally track and store information regarding highway construction...E-ticketing,which has been promoted by the Federal Highway Administration(FHWA)“every day counts”(EDC)initiative,utilizes software applications to digitally track and store information regarding highway construction materials paid by state transportation agencies(STAs)by weight in unit bid contract structures.STAs often face implementation barriers such as institutional inertia,or the resistance by stakeholders to adopt changes from the status quo,including new technologies.The purpose of this paper is to determine the progression of STA e-ticketing policy adoption,specifically with a focus on asphalt paving operations,due to the COVID-19 pandemic.To accomplish this research effort,previous FHWA data,National Cooperative Highway Research Program(NCHRP)data,and other literatures are reviewed to determine an implementation baseline.Additional data is collected from the American Association of State Highway and Transportation Officials Committee on Con-struction to gain current feedback from STAs and their highway contractor partners after the COVID-19 pandemic.Additionally,a case study featuring the Kentucky Transportation Cabinet(KYTC),the Kentucky Association of Highway Contractors(KAHC),and the Plantmix Asphalt Industry of Kentucky(PAIKY)is performed to provide more in-depth analysis.The major finding includes a statistically significant result indicating increased imple-mentation of e-ticketing for asphalt operations within the last two years,along with noting benefits including employee safety,task loading,and project documentation along with concerns regarding cellular connectivity and procurement responsibilities.These findings indicate the importance of STAs investing in partnership with con-tractors to improve stakeholder buy-in before proceeding towards e-ticketing adoption.展开更多
The application of reclaimed asphalt pavement(RAP)and reclaimed asphalt shingles(RAS)on asphalt pavement can reduce the asphalt paving cost,conserve energy and protect the environment.However,the use of high contents ...The application of reclaimed asphalt pavement(RAP)and reclaimed asphalt shingles(RAS)on asphalt pavement can reduce the asphalt paving cost,conserve energy and protect the environment.However,the use of high contents of RAP and RAS in asphalt pavement may lead to durability issues,especially the fatigue cracking and thermal cracking.It is necessary to conduct a series of analyses on asphalt mixtures containing high RAP and RAS,and seek methods to enhance their long-term performance.This paper provides a comprehensive over-view of the long-term performance of recycled asphalt mixtures containing high contents of RAP and RAS.The findings in this research show that rutting resistance of high recycled asphalt mixtures is not a concern,whereas their resistance to fatigue and thermal cracking is not conclusive.Recycling agents can be used to improve the thermal cracking resistance of high recycled asphalt mixtures.An optimum decision on recycling agents will improve the durability properties of high recycled asphalt mixtures.It is recommended that to use a balanced mixture design approach with testing of the blended asphalt binders will provide better understanding of long-term performance of recycled asphalt mixtures containing high RAP and RAS.展开更多
The dynamic viscoelastic properties of asphalt AC-20 and its composites with Organic-Montmorillonite clay (OMMt) and SBS were modeled using the empirical Havriliak-Negami (HN) model, based on linear viscoelastic theor...The dynamic viscoelastic properties of asphalt AC-20 and its composites with Organic-Montmorillonite clay (OMMt) and SBS were modeled using the empirical Havriliak-Negami (HN) model, based on linear viscoelastic theory (LVE). The HN parameters, α, β, G0, G∞and τHN were determined by solving the HN equation across various temperatures and frequencies. The HN model successfully predicted the rheological behavior of the asphalt and its blends within the temperature range of 25˚C - 40˚C. However, deviations occurred between 40˚C - 75˚C, where the glass transition temperature Tg of the asphalt components and the SBS polymer are located, rendering the HN model ineffective for predicting the dynamic viscoelastic properties of composites containing OMMt under these conditions. Yet, the prediction error of the HN model dropped to 2.28% - 2.81% for asphalt and its mixtures at 100˚C, a temperature exceeding the Tg values of both polymer and asphalt, where the mixtures exhibited a liquid-like behavior. The exponent α and the relaxation time increased with temperature across all systems. Incorporating OMMt clay into the asphalt blends significantly enhanced the relaxation dynamics of the resulting composites.展开更多
To study the influence of fiber on the properties of asphalt mortar,the properties of lignin fiber,polyester fiber,and basalt fiber were summarized and analyzed respectively.The high-and low-temperature properties of ...To study the influence of fiber on the properties of asphalt mortar,the properties of lignin fiber,polyester fiber,and basalt fiber were summarized and analyzed respectively.The high-and low-temperature properties of fiber asphalt mortar were studied and analyzed by using three indexes,rutting factor and tensile fracture energy.The results showed that all three kinds of fibers could improve the performance of asphalt mortar to varying degrees,with lignin fiber demonstrating the best effect,followed by basalt fiber and polyester fiber.The type the fiber can be selected based on the required thermal stability and cost depending on the project type.展开更多
Polyurethane(PU),with excellent physical and chemical properties and high designability,is one of the ideal materials for asphalt modification in the future.In this paper,based on the limitations of traditional asphal...Polyurethane(PU),with excellent physical and chemical properties and high designability,is one of the ideal materials for asphalt modification in the future.In this paper,based on the limitations of traditional asphalt modifiers,the preparation process,relative advantages and development prospects of PU as asphalt modifiers are described.Subsequently,the spatial structure,physical and chemical properties of PU synthetic raw materials were combined with the modification properties of PU to analyze the effect and influence of PU on asphalt modification.Specifically,polyurethane modified asphalt(PUMA)is divided into thermoplastic polyurethane modified asphalt(TP-PUMA)and thermosetting polyurethane modified asphalt(TS-PUMA).The gain effect of TPPUMA in high-temperature performance,low-temperature performance,aging resistance,fatigue resistance,weathering performance and bonding performance is obvious.In addition,it has good storage stability.With excellent road performance,TS-PUMA makes up for the shortcomings of epoxy asphalt in terms of lowtemperature performance and compatibility.Finally,due to the development trend of functional diversification of modified asphalt,the research basis and status of several new modified asphalts based on PU properties are described.Because the systematic study of PUMA is insufficient,this paper proposes corresponding research.To provide guidance and ideas for the research of PU modified asphalt.展开更多
基金Funded by the National Natural Science Foundation of China(No.52378444)。
文摘To promote the recycling of reclaimed asphalt pavement(RAP),epoxy resin was used to prepare the epoxy-recycled asphalt mixtures.The effect of epoxy resin on the properties of aged asphalt binder was investigated based on the tensile test,flexural creep test,and laser scanning confocal microscopy.The curing characteristics and the mechanical performance of recycled asphalt with different epoxy contents were explored.The results show that the low-temperature performance,ductility,and strength of the aged asphalt binder were significantly improved when the epoxy content reached 40%.The curing time of epoxy-recycled asphalt should be at least 4 d to ensure the formation of good internal spatial network structure.
基金Funded by the National Natural Science Foundation of China(No.52008069)。
文摘Modifying agents 2,2-Bis(4-glycidyloxyphenyl)propane(2BPE)and dibutyl phthalate(DBP)were selected to enhance the compatibility.By using molecular simulation software(Materials Studio,MS),nine systems were constructed,including molecular models of aged asphalt and WVO monomers with 2BPE and/or DBP.The solubility parameters,Flory-Huggins parameters,and interaction energies of these systems were calculated to determine the impact of 2BPE and DBP on the compatibility of WVO and aged asphalt.Results showed that the addition of 2BPE and DBP reduced the difference in the solubility parameters between WVO and aged asphalt,thus improving the compatibility between WVO and aged asphalt.Additionally,using a combination of 2BPE and DBP in both aged asphalt and rejuvenator was found to be more effective than using either 2BPE or DBP alone.Finally,it was determined that evaluating the compatibility of WVO and aged asphalt using Van der Waals potential and non-bonding energy as evaluation indicators was more accurate than using electrostatic potential energy.
基金the Scientific Technology R&D Project of CCCC Asset Management Co.,Ltd.(RP2022015294&RP2022015296).
文摘Conventional repairing methods for asphalt pavement have some inconveniences,such as insufficient strength,and are typically time-consuming.To address these issues,this study proposes a new technological method to design and prepare a high-performance assembled asphalt concrete block for fast repair of the potholes.A series of composite modified asphalt binders with 10%crumb rubber(CR)and different dosages(0%,1%,3%,5%)of polyurethane(PU)are examined to determine the optimized binder.Subsequently,the corresponding asphalt mixtures are prepared for further comparison and assessment of engineering properties,such as moistureinduced damage,high-temperature deformation,and low-temperature cracking characteristics.The test results show that PU can significantly improve the high-temperature performance and hardness of(crumb rubber modified asphalt)CRMA binder;3%PU contributes allowing the resistance of CRMA mixture to moisture-induced damage at higher levels,particularly under water whole immersion;as 3%PU is added,the high-temperature rutting deformation resistance of the CRMA mixture increases significantly,and the low-temperature anti-cracking properties are also improved slightly.Therefore,the innovatively designed high-quality assembled fast-repairing asphalt concrete block is recommended as an appropriate option for highway maintenance.
基金Funded by Natural Science Foundation of Inner Mongolia,China (No. 2019MS05033)。
文摘In order to study the anti-fatigue performance of RCA modified asphalt (RMA),the performance of RMA and 90#matrix asphalt with different modifier content were measured by asphalt penetration,ductility,softening point,Brookfield viscosity,rheological index,infrared spectrum and dielectric constant test.This paper discusses the changes of asphalt basic indexes,fatigue properties and asphalt components based on dielectric properties under different modifier contents,and analyzes the grey correlation degree between components and asphalt pavement performance indexes.The results show that the optimum content of RCA modifier is 16.7%of the asphalt quality according to the penetration,ductility,softening point,Brockfield viscosity,viscosity temperature curve and fatigue life.In the phase angle-strain curve,there is disorder in the latter part of the curve.According to the strain (ε_(d)) corresponding to the disorder point,a new fatigue failure criterion is proposed and proved.Based on the new asphalt fatigue failure criterion,the fatigue prediction model of asphalt mixture is improved,and the fatigue life predicted by the improved fatigue model is compared with the fatigue life obtained by four-point bending fatigue test.The results show that the proposed new asphalt fatigue failure criterion is reasonable,and the fatigue life predicted by the improved asphalt mixture fatigue prediction model is accurate.The research method of classifying asphalt components based on dielectric properties is simple and effective,and the components have a high correlation with the road performance of base asphalt and modified asphalt.
文摘Aiming to analyze the damage mechanism of UTAO from the perspective of meso-mechanical mechanism using discrete element method(DEM),we conducted study of diseases problems of UTAO in several provinces in China,and found that aggregate spalling was one of the main disease types of UTAO.A discrete element model of UTAO pavement structure was constructed to explore the meso-mechanical mechanism of UTAO damage under the influence of layer thickness,gradation,and bonding modulus.The experimental results show that,as the thickness of UTAO decreasing,the maximum value and the mean value of the contact force between all aggregate particles gradually increase,which leads to aggregates more prone to spalling.Compared with OGFC-5 UTAO,AC-5 UTAO presents smaller maximum and average values of all contact forces,and the loading pressure in AC-5 UTAO is fully diffused in the lateral direction.In addition,the increment of pavement modulus strengthens the overall force of aggregate particles inside UTAO,resulting in aggregate particles peeling off more easily.The increase of bonding modulus changes the position where the maximum value of the tangential force appears,whereas has no effect on the normal force.
基金the National Key R&D Program of China(2021YFB2601200)the Science and Technology Project of Department of Communication of Zhejiang Province(2021043).
文摘In this study,the regenerative effects of different regenerants on aged SBS-modified asphalt from different perspectives were investigated,including their conventional properties,viscoelastic behavior,creep-related properties,and micromorphology.Base oils composed of different proportions of aromatic and saturated hydrocarbons as well as the styrene-butadiene-styrene(SBS)restorer were used to prepare the regenerants.The results showed that the components of the base oil of the regenerant played a crucial role in determining the characteristics and performance of the recycled SBSmodified asphalt.Regenerants containing a high proportion of aromatics dissolved the hard segment in the SBS restorer,thereby delaying the effect of a reduction in the regenerants on the performance of the aged asphalts at a high temperature.Regenerants containing a high proportion of saturates dissolved the soft segment in the SBS restorer to enhance the lowtemperature performance of the recycled asphalts.In addition,the stress sensitivity of the recycled asphalts increased with the fraction of aromatics in the regenerant.As the aromatic content of the base oil components of the regenerants increased and their saturate content decreased,the state of dispersion of the SBS phase in the recycled SBS-modified asphalts improved.The optimal content of aromatics in the base oil of the regenerants should be set in the range of 33%to 47%to ensure the adequate performance of the recycled asphalts and a high efficiency of the SBS restorer.
基金Funded by the National Natural Science Foundation of China(No.11962024)Key Technology Project of Inner Mongolia Autonomous Region(No.2019GG031)。
文摘The objective of this paper was to study low temperature crack resistance mechanism of steel slag asphalt mixture(SAM).Thermal stress restrained specimen test(TSRST)and three-point bending test were carried out to evaluate the low-temperature crack resistance of SAM and basalt asphalt mixture(BAM).Based on the digital image correlation technique(DIC),the strain field distribution and crack propagation of SAM were analyzed from the microscopic point of view,and a new index,crack length factor(C),was proposed to evaluate the crack resistance of the asphalt mixture.The crystal phase composition and microstructure of steel slag aggregate(SA)and basalt aggregate(BA)were studied by X-ray diffraction(XRD)and scanning electron microscopy(SEM)to explore the low-temperature crack resistance mechanism of SAM.Results show that the low-temperature crack resistance of SAM is better than that of BAM;SAM has good integrity and persistent elastic deformation,and its bending failure mode is a hysteretic quasi-brittle failure;The SA surface is evenly distributed with pores and has surface roughness.SA has the composition phase of alkaline aggregate-calcite(CaCO3),so it has good adhesion to asphalt,which reveals the mechanism of excellent low-temperature crack resistance of SAM.
基金the support of the Joint Funds of the Natural Science Foundation of Hubei Province(2022CFD130)the Technology Innovation Project of Hubei Province(Key Program,No.2023BEB010)+1 种基金the Key Research and Development Program of Hubei Province(No.2021BGD015)the Knowledge Innovation Project of Wuhan(No.2022010801010259).
文摘An experimental investigation into the thermal conductivity of CF-SiC two-phase composite asphalt concrete is presented.The main objective of this study was to verify the possibility of using SiC powder instead of mineral powder as the thermal conductive filler to prepare a new type of asphalt concrete and improve the efficiency of electrothermal snow and ice melting systems accordingly.The thermal conductivity of asphalt concrete prepared with different thermally conductive fillers was tested by a transient plane source method,and the related performances were measured.Then the temperature rise rate and surface temperature were studied through field heating tests.Finally,the actual ice melting efficiency of the thermally conductive asphalt concrete was evaluated using an effective electrothermal system.As shown by the experimental results,the composite made of SiC powder and carbon fiber has a high thermal conductivity.When SiC replaces mineral powder,the thermal conductivity of the asphalt mixture increases first and then decreases with the increase of carbon fiber content.In the present study,in particular,the thermal conductivity attained a peak when the carbon fiber content was 0.2%of the aggregate mass.
基金supported by the Scientific Technology R&D Project of CCCC Asset Management Co.,Ltd.(RP2022015294).
文摘Traditional asphalt rejuvenators,like aromatic oil(AO),are known to be effective in improving the low-temperature properties and fatigue performances of aged SBS(styrene-butadiene-styrene)modified asphalt(SBSMA)binders and mixtures.However,these rejuvenators inevitably compromise their high-temperature properties and deformation resistances because they dilute asphalt binder but do not fix the damaged structures of aged SBS.In this study,a highly-active chemical called polymerized 4,4-diphenylmethane diisocyanate(PMDI)was used to assist the traditional AO asphalt rejuvenator.The physical and rheological characteristics of rejuvenated SBSMA binders and the moisture-induced damage and rut deformation performances of corresponding mixtures were comparatively evaluated.The results showed that the increasing proportion of AO compromises the hightemperature property and hardness of aged SBSMA binder,and an appropriate amount of PMDI works to compensate such losses;3%rejuvenator at mass ratio of AO:PMDI=70:30 can have a rejuvenated SBSMA binder with a high-temperature performance similar to that of fresh binder,approximately at 71.4°C;the use of AO can help reduce the viscosity of PMDI rejuvenated SBSMA binder for improving its workability;PMDI can help improve the resistance of AO rejuvenated SBSMA binder to deformation,especially at elevated temperatures,through its chemical reactions with aged SBS;moisture induction can enhance the resistance to damage of rejuvenated mixtures containing AO/PMDI or only PMDI;and the rejuvenator with a mass ratio of AO:PMDI=70:30 can lead the rejuvenated mixture to meet the application requirement,with a rut depth of only 2.973 mm,although more PMDI can result in a higher resistance of rejuvenated mixtures to high-temperature deformation.
基金appreciate support from the projects of Science and Technology Project of Transportation Department of Heilongjiang Province(No.HJK2019B009)the Fundamental Research Funds for the Cornell University(No.2572021AW10)the Ludong Uni-versity to Introduce Talents Research Start-up Funding Project(No.20240050).
文摘To evaluate the regularity of resilient modulus for hot-mix asphalt(HMA)under large temperature fluctuations,back propagation(BP)neural network technology was used to analyze the continuous change of HMA resilient modulus.Firstly,based on the abundant data,the training model of HMA resilient modulus was established by using BP neural network technology.Subsequently,BP neural network prediction and regression analysis were performed,and the prediction model of HMA resilient modulus at different temperatures(50C to 60C)was obtained,which fully considered multi-factor and nonlinearity.Finally,the fitted theoretical model can be used to evaluate the HMA performance under the condition of large temperature fluctuations,and the rationality of theoretical model was verified by taking Harbin region as an example.It was found that the relationship between HMA resilient modulus and temperatures can be described by inverse tangent function.And the key parameters of theoretical model can be used to evaluate the continuous change characteristics of HMA resilient modulus with large temperature fluctuations.The results can further improve the HMA performance evaluation system and have certain theoretical value.
基金the National Natural Science Foundation of China(52378460 and 51878526)the Program Fund of Non-metallic Excellent and Innovation Center for Building Materials(Grants 2024TDA-3)Knowledge Innovation Program of Wuhan-Basic Research from the Wuhan Science and Technology Bureau(2022020801010176)are gratefully acknowledged.
文摘Recently, researchers in the road field are focusing on the development of green asphalt materials with loweremission of volatile organic compounds (VOCs). The characterization methodology of asphalt VOCs and theinfluencing factors on VOCs release have always been the basic issue of asphalt VOCs emission reduction research.Researchers have proposed a variety of asphalt VOCs characterization methodologies, which also have mutuallyirreplaceable characteristics. Asphalt VOCs volatilization is affected by many factors. In this study, asphalt VOCscharacterization methodologies were summarized, including their advantages, disadvantages, characteristics andapplicable requirements. Subsequently, the influencing factors of VOCs release, such as asphalt types and environment conditions, are summarized to provide theoretical support for the emission reduction research. Theclassification and mechanism of newly-development asphalt VOCs emission reduction materials are reviewed. Thereduction efficiencies are also compared to select better materials and put forward the improvement objective ofnew materials and new processes. In addition, the prospects about development of VOCs release mechanism ofasphalt materials during the full life cycle and feasibility research of high-efficiency composite emission reductionmaterials in the future were put forward.
基金the Swedish Research Council for Sustainable Development FORMAS(grant 2021-00527)Wangjie Wu acknowledges the scholarship funding of the CSC-KTH program.
文摘The pressing demand for sustainable advancements in road infrastructure has catalyzed extensive research into environmentally conscious alternatives for the maintenance and restoration of asphalt concrete pavements.This paper offers a comprehensive review and analysis of bio-based rejuvenators as a promising avenue for enhancing the longevity and sustainability of asphalt.Through a multifaceted exploration,it delves into various aspects of this innovative approach.Providing a thorough overview of bio-based rejuvenators,the study highlights their renewable and environmentally friendly characteristics.It conducts an in-depth examination of a wide spectrum of bio-derived materials,including vegetable oils,waste-derived bio-products,and biopolymers,through a comprehensive survey.The paper evaluates how bio-based rejuvenators enhance aged asphalt binders and mixes,effectively mitigating the adverse impacts of aging.Furthermore,it investigates how these rejuvenators address environmental concerns by identifying compatibility issues,assessing long-term performance,and evaluating economic feasibility.Finally,the paper outlines potential advancements and research pathways aimed at optimizing the utilization of bio-based rejuvenators in asphalt concrete,thereby contributing to the sustainable evolution of road infrastructure.
基金the National Natural Science Foundation of China(Grant No.52378452)Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX23_1193)+1 种基金Nanjing Transportation Science and Technology Project(JSZC-320100-HBGLC2023-0037)Nantong Highway Development Center Science and Technology Project(2022PMLQYJ)and 333 High-level Talent Project of Jiangsu Province(6th).
文摘To comprehensively assess the current state-of-art in asphalt foaming technology, the following four key aspectshave been reviewed systematically: foaming principles, test methods, evaluation indicators, and influencing factors.Key findings reveal that asphalt foaming was primarily driven by the vaporization of water, with deteriorationprocesses including bubble collapse and liquid film drainage. However, the current understanding of asphaltfoaming principles remains limited, primarily due to difficulties in capturing and precisely measuring its microscopic behaviors during asphalt foaming process. Volume changes provided an intuitive means to evaluate theexpansion capacity of asphalt and its foaming stability. Bubble evolution characteristics of foamed asphalt offeredpromising insights into its foaming performance. Traditional ruler and stopwatch-based assessments were beingsuperseded by automated techniques like laser and ultrasonic ranging. Nevertheless, the current measuringequipment still lacks the capability to comprehensively evaluate the foaming effect of asphalt across various dimensions. Asphalt temperature and foaming water consumption significantly affected asphalt foaming performance, and the inclusion of foaming agents typically led to a notable increase in the half life of foamed asphalt.However, the interaction between foaming agents and asphalt, as well as the underlying mechanisms affecting thefoaming effect, are still unclear and require further exploration. Future research should primarily focus on thecorrelation between asphalt foaming effect and mixture performance, aiming to guide the practical engineeringapplication of foamed asphalt mixtures and enlarge the advantages of such low-emission and sustainable mixtures.
文摘This study introduces and evaluates a novel artificial hummingbird algorithm-optimised boosted tree(AHAboosted)model for predicting the dynamic modulus(E*)of hot mix asphalt concrete.Using a substantial dataset from NCHRP Report-547,the model was trained and rigorously tested.Performance metrics,specifically RMSE,MAE,and R2,were employed to assess the model's predictive accuracy,robustness,and generalisability.When benchmarked against well-established models like support vector machines(SVM)and gaussian process regression(GPR),the AHA-boosted model demonstrated enhanced performance.It achieved R2 values of 0.997 in training and 0.974 in testing,using the traditional Witczak NCHRP 1-40D model inputs.Incorporating features such as test temperature,frequency,and asphalt content led to a 1.23%increase in the test R2,signifying an improvement in the model's accuracy.The study also explored feature importance and sensitivity through SHAP and permutation importance plots,highlighting binder complex modulus|G*|as a key predictor.Although the AHA-boosted model shows promise,a slight decrease in R2 from training to testing indicates a need for further validation.Overall,this study confirms the AHA-boosted model as a highly accurate and robust tool for predicting the dynamic modulus of hot mix asphalt concrete,making it a valuable asset for pavement engineering.
基金the University of Teknologi PETRONAS(UTP),Malaysia,and Ahmadu Bello University,Nigeria,for their vital help and availability of laboratory facilities that allowed this work to be conducted successfully.
文摘The goals of this study are to assess the viability of waste tire-derived char(WTDC)as a sustainable,low-cost fine aggregate surrogate material for asphalt mixtures and to develop the statistically coupled neural network(SCNN)model for predicting volumetric and Marshall properties of asphalt mixtures modified with WTDC.The study is based on experimental data acquired from laboratory volumetric and Marshall properties testing on WTDCmodified asphalt mixtures(WTDC-MAM).The input variables comprised waste tire char content and asphalt binder content.The output variables comprised mixture unit weight,total voids,voids filled with asphalt,Marshall stability,and flow.Statistical coupled neural networks were utilized to predict the volumetric and Marshall properties of asphalt mixtures.For predictive modeling,the SCNN model is employed,incorporating a three-layer neural network and preprocessing techniques to enhance accuracy and reliability.The optimal network architecture,using the collected dataset,was a 2:6:5 structure,and the neural network was trained with 60%of the data,whereas the other 20%was used for cross-validation and testing respectively.The network employed a hyperbolic tangent(tanh)activation function and a feed-forward backpropagation.According to the results,the network model could accurately predict the volumetric and Marshall properties.The predicted accuracy of SCNN was found to be as high value>98%and low prediction errors for both volumetric and Marshall properties.This study demonstrates WTDC's potential as a low-cost,sustainable aggregate replacement.The SCNN-based predictive model proves its efficiency and versatility and promotes sustainable practices.
文摘E-ticketing,which has been promoted by the Federal Highway Administration(FHWA)“every day counts”(EDC)initiative,utilizes software applications to digitally track and store information regarding highway construction materials paid by state transportation agencies(STAs)by weight in unit bid contract structures.STAs often face implementation barriers such as institutional inertia,or the resistance by stakeholders to adopt changes from the status quo,including new technologies.The purpose of this paper is to determine the progression of STA e-ticketing policy adoption,specifically with a focus on asphalt paving operations,due to the COVID-19 pandemic.To accomplish this research effort,previous FHWA data,National Cooperative Highway Research Program(NCHRP)data,and other literatures are reviewed to determine an implementation baseline.Additional data is collected from the American Association of State Highway and Transportation Officials Committee on Con-struction to gain current feedback from STAs and their highway contractor partners after the COVID-19 pandemic.Additionally,a case study featuring the Kentucky Transportation Cabinet(KYTC),the Kentucky Association of Highway Contractors(KAHC),and the Plantmix Asphalt Industry of Kentucky(PAIKY)is performed to provide more in-depth analysis.The major finding includes a statistically significant result indicating increased imple-mentation of e-ticketing for asphalt operations within the last two years,along with noting benefits including employee safety,task loading,and project documentation along with concerns regarding cellular connectivity and procurement responsibilities.These findings indicate the importance of STAs investing in partnership with con-tractors to improve stakeholder buy-in before proceeding towards e-ticketing adoption.
基金supported by National Natural Science Fund for Excellent Young Scientists Fund Program (Overseas) (Grant No.22FAA02811)Pearl River Talent Plan for the Introduction of High-level Talents (Young Top-notch Talents) (Grant No.2021QN02G744)+1 种基金National Natural Science Foundation of China (Grant No.52178426)the Fundamental Research Funds for the Central Universities (Grant No.SCUT 2022ZYGXZR066 and 2023ZYGXZR001).
文摘The application of reclaimed asphalt pavement(RAP)and reclaimed asphalt shingles(RAS)on asphalt pavement can reduce the asphalt paving cost,conserve energy and protect the environment.However,the use of high contents of RAP and RAS in asphalt pavement may lead to durability issues,especially the fatigue cracking and thermal cracking.It is necessary to conduct a series of analyses on asphalt mixtures containing high RAP and RAS,and seek methods to enhance their long-term performance.This paper provides a comprehensive over-view of the long-term performance of recycled asphalt mixtures containing high contents of RAP and RAS.The findings in this research show that rutting resistance of high recycled asphalt mixtures is not a concern,whereas their resistance to fatigue and thermal cracking is not conclusive.Recycling agents can be used to improve the thermal cracking resistance of high recycled asphalt mixtures.An optimum decision on recycling agents will improve the durability properties of high recycled asphalt mixtures.It is recommended that to use a balanced mixture design approach with testing of the blended asphalt binders will provide better understanding of long-term performance of recycled asphalt mixtures containing high RAP and RAS.
文摘The dynamic viscoelastic properties of asphalt AC-20 and its composites with Organic-Montmorillonite clay (OMMt) and SBS were modeled using the empirical Havriliak-Negami (HN) model, based on linear viscoelastic theory (LVE). The HN parameters, α, β, G0, G∞and τHN were determined by solving the HN equation across various temperatures and frequencies. The HN model successfully predicted the rheological behavior of the asphalt and its blends within the temperature range of 25˚C - 40˚C. However, deviations occurred between 40˚C - 75˚C, where the glass transition temperature Tg of the asphalt components and the SBS polymer are located, rendering the HN model ineffective for predicting the dynamic viscoelastic properties of composites containing OMMt under these conditions. Yet, the prediction error of the HN model dropped to 2.28% - 2.81% for asphalt and its mixtures at 100˚C, a temperature exceeding the Tg values of both polymer and asphalt, where the mixtures exhibited a liquid-like behavior. The exponent α and the relaxation time increased with temperature across all systems. Incorporating OMMt clay into the asphalt blends significantly enhanced the relaxation dynamics of the resulting composites.
文摘To study the influence of fiber on the properties of asphalt mortar,the properties of lignin fiber,polyester fiber,and basalt fiber were summarized and analyzed respectively.The high-and low-temperature properties of fiber asphalt mortar were studied and analyzed by using three indexes,rutting factor and tensile fracture energy.The results showed that all three kinds of fibers could improve the performance of asphalt mortar to varying degrees,with lignin fiber demonstrating the best effect,followed by basalt fiber and polyester fiber.The type the fiber can be selected based on the required thermal stability and cost depending on the project type.
基金supported by the National Natural Science Foundation of China(51978070,51978072)Key Research and Development Plan Project of Shaanxi Province(2023-YBSF-110)the Fundamental Research Funds for the Central Universities,CHD(300102313206).
文摘Polyurethane(PU),with excellent physical and chemical properties and high designability,is one of the ideal materials for asphalt modification in the future.In this paper,based on the limitations of traditional asphalt modifiers,the preparation process,relative advantages and development prospects of PU as asphalt modifiers are described.Subsequently,the spatial structure,physical and chemical properties of PU synthetic raw materials were combined with the modification properties of PU to analyze the effect and influence of PU on asphalt modification.Specifically,polyurethane modified asphalt(PUMA)is divided into thermoplastic polyurethane modified asphalt(TP-PUMA)and thermosetting polyurethane modified asphalt(TS-PUMA).The gain effect of TPPUMA in high-temperature performance,low-temperature performance,aging resistance,fatigue resistance,weathering performance and bonding performance is obvious.In addition,it has good storage stability.With excellent road performance,TS-PUMA makes up for the shortcomings of epoxy asphalt in terms of lowtemperature performance and compatibility.Finally,due to the development trend of functional diversification of modified asphalt,the research basis and status of several new modified asphalts based on PU properties are described.Because the systematic study of PUMA is insufficient,this paper proposes corresponding research.To provide guidance and ideas for the research of PU modified asphalt.