This paper reports on the implementation of efficient burst assembly algorithms and traffic prediction. The ultimate goal is to propose a new burst assembly algorithm which is based on time-burst length (hybrid) thr...This paper reports on the implementation of efficient burst assembly algorithms and traffic prediction. The ultimate goal is to propose a new burst assembly algorithm which is based on time-burst length (hybrid) threshold with traffic prediction to reduce burst assembly delay in OBS (Optical Burst Switching) networks. Research has shown that traffic always change from time to time, hence, any measure that is put in place should be able to adapt to such changes. With our implemented burst assembly algorithm, the traffic rate is predicted and the predicted rate is used to dynamically adjust the burst assembly length. This work further investigates the impact of the proposed algorithm on traffic self similarity.展开更多
Over the past 20 years,tremendous advances in sequencing technologies and computational algorithms have spurred plant genomic research into a thriving era with hundreds of genomes decoded already,ranging from those of...Over the past 20 years,tremendous advances in sequencing technologies and computational algorithms have spurred plant genomic research into a thriving era with hundreds of genomes decoded already,ranging from those of nonvascular plants to those of flowering plants.However,complex plant genome assembly is still challenging and remains difficult to fully resolve with conventional sequencing and assembly methods due to high heterozygosity,highly repetitive sequences,or high ploidy characteristics of complex genomes.Herein,we summarize the challenges of and advances in complex plant genome assembly,including feasible experimental strategies,upgrades to sequencing technology,existing assembly methods,and different phasing algorithms.Moreover,we list actual cases of complex genome projects for readers to refer to and draw upon to solve future problems related to complex genomes.Finally,we expect that the accurate,gapless,telomere-totelomere,and fully phased assembly of complex plant genomes could soon become routine.展开更多
文摘This paper reports on the implementation of efficient burst assembly algorithms and traffic prediction. The ultimate goal is to propose a new burst assembly algorithm which is based on time-burst length (hybrid) threshold with traffic prediction to reduce burst assembly delay in OBS (Optical Burst Switching) networks. Research has shown that traffic always change from time to time, hence, any measure that is put in place should be able to adapt to such changes. With our implemented burst assembly algorithm, the traffic rate is predicted and the predicted rate is used to dynamically adjust the burst assembly length. This work further investigates the impact of the proposed algorithm on traffic self similarity.
基金supported by the National Natural Science Foundation of China(Grant No.32222019)the National Key R&D Program of China(Grant No.2021YFF1000900).
文摘Over the past 20 years,tremendous advances in sequencing technologies and computational algorithms have spurred plant genomic research into a thriving era with hundreds of genomes decoded already,ranging from those of nonvascular plants to those of flowering plants.However,complex plant genome assembly is still challenging and remains difficult to fully resolve with conventional sequencing and assembly methods due to high heterozygosity,highly repetitive sequences,or high ploidy characteristics of complex genomes.Herein,we summarize the challenges of and advances in complex plant genome assembly,including feasible experimental strategies,upgrades to sequencing technology,existing assembly methods,and different phasing algorithms.Moreover,we list actual cases of complex genome projects for readers to refer to and draw upon to solve future problems related to complex genomes.Finally,we expect that the accurate,gapless,telomere-totelomere,and fully phased assembly of complex plant genomes could soon become routine.