Bymeans of the local surface nanocrystallization that enables to change the material on local positions,an innovative embedded multi-cell(EMC)thin-walled energy absorption structures with local surface nanocrystalliza...Bymeans of the local surface nanocrystallization that enables to change the material on local positions,an innovative embedded multi-cell(EMC)thin-walled energy absorption structures with local surface nanocrystallization is proposed in this paper.The local surface nanacrystallization stripes are regarded as the moving morphable components in the domain for optimal design.Results reveal that after optimizing the local surface nanocrystallization layout,the specific energy absorption(SEA)is increased by 50.78%compared with the untreated counterpart.Besides,in contrast with the optimized 4-cell structure,the SEA of the nanocrystallized embedded 9-cell structure is further enhanced by 27.68%,in contrast with the 9-cell structure,the SEA of the nanocrystallized embedded clapboard type 9-cell structure is enhanced by 3.61%.Thismethod provides a guidance for the design of newenergy absorption devices.展开更多
The weak layer of steel concrete (RC) frame structure is easy to destroy under the action of the earthquake, the damage mechanism is more difficult to control. Severe damage to the building structure after the earthqu...The weak layer of steel concrete (RC) frame structure is easy to destroy under the action of the earthquake, the damage mechanism is more difficult to control. Severe damage to the building structure after the earthquake, resulting in too high repair costs or having to dismantle and rebuild. In order to improve and enhance the anti-seismic performance of the RC framework structure, energy consumption devices are added between the frame columns to achieve the effect of reducing the RC frame structure damage and improving the seismic performance of the RC frame structure. In this article, high-performance fiber-enhanced cement base composite materials fabricated energy consumption walls are prepared in the RC frame structure to form a new type of seismic structure system of RC frame-prefabricated HPFRCC energy consumption wall. This article uses the power timing analysis of the ABAQUS finite element software to study the anti-seismic performance, influencing factors and energy consumption distribution of the RC frame-prefabricated HPFRCC energy wall structural system.展开更多
Funded by the National Natural Science Foundation of China(NSFC),Ministry of Science and Technology of China,and Chinese Academy of Sciences,ajoint team of three laboratories from the Institute of Biophysics of Chines...Funded by the National Natural Science Foundation of China(NSFC),Ministry of Science and Technology of China,and Chinese Academy of Sciences,ajoint team of three laboratories from the Institute of Biophysics of Chinese Academy of Sciences,led by Dr.Liu Zhenfeng(柳振峰),Dr.Zhang Xinzheng(章新政)and Dr.Li Mei(李梅)respectively,solved the structure of spinach photosystem II-LHCII supercom-展开更多
Funded by the National Natural Science Foundation of China,Chinese Ministry of Science and Technology,and Chinese Academy of Sciences,ajoint team of three laboratories from the Institute of Biophysics of Chinese Acade...Funded by the National Natural Science Foundation of China,Chinese Ministry of Science and Technology,and Chinese Academy of Sciences,ajoint team of three laboratories from the Institute of Biophysics of Chinese Academy of Sciences,namely Liu Zhenfeng’s(柳振峰),Zhang展开更多
基金Dalian Innovation Foundation of Science and Technology(2018J11CY005)State Key Laboratory of Structural Analysis for Industrial Equipment(S18313)are gratefully acknowledged.
文摘Bymeans of the local surface nanocrystallization that enables to change the material on local positions,an innovative embedded multi-cell(EMC)thin-walled energy absorption structures with local surface nanocrystallization is proposed in this paper.The local surface nanacrystallization stripes are regarded as the moving morphable components in the domain for optimal design.Results reveal that after optimizing the local surface nanocrystallization layout,the specific energy absorption(SEA)is increased by 50.78%compared with the untreated counterpart.Besides,in contrast with the optimized 4-cell structure,the SEA of the nanocrystallized embedded 9-cell structure is further enhanced by 27.68%,in contrast with the 9-cell structure,the SEA of the nanocrystallized embedded clapboard type 9-cell structure is enhanced by 3.61%.Thismethod provides a guidance for the design of newenergy absorption devices.
文摘The weak layer of steel concrete (RC) frame structure is easy to destroy under the action of the earthquake, the damage mechanism is more difficult to control. Severe damage to the building structure after the earthquake, resulting in too high repair costs or having to dismantle and rebuild. In order to improve and enhance the anti-seismic performance of the RC framework structure, energy consumption devices are added between the frame columns to achieve the effect of reducing the RC frame structure damage and improving the seismic performance of the RC frame structure. In this article, high-performance fiber-enhanced cement base composite materials fabricated energy consumption walls are prepared in the RC frame structure to form a new type of seismic structure system of RC frame-prefabricated HPFRCC energy consumption wall. This article uses the power timing analysis of the ABAQUS finite element software to study the anti-seismic performance, influencing factors and energy consumption distribution of the RC frame-prefabricated HPFRCC energy wall structural system.
文摘Funded by the National Natural Science Foundation of China(NSFC),Ministry of Science and Technology of China,and Chinese Academy of Sciences,ajoint team of three laboratories from the Institute of Biophysics of Chinese Academy of Sciences,led by Dr.Liu Zhenfeng(柳振峰),Dr.Zhang Xinzheng(章新政)and Dr.Li Mei(李梅)respectively,solved the structure of spinach photosystem II-LHCII supercom-
文摘Funded by the National Natural Science Foundation of China,Chinese Ministry of Science and Technology,and Chinese Academy of Sciences,ajoint team of three laboratories from the Institute of Biophysics of Chinese Academy of Sciences,namely Liu Zhenfeng’s(柳振峰),Zhang