Impact dynamics of flexible solids is important in engineering practice. Obtaining its dynamic response is a challenging task and usually achieved by numerical methods. The objectives of the study are twofold. Firstly...Impact dynamics of flexible solids is important in engineering practice. Obtaining its dynamic response is a challenging task and usually achieved by numerical methods. The objectives of the study are twofold. Firstly, the discrete singular convolution (DSC) is used for the first time to analyze the impact dynamics. Secondly, the efficiency of various numerical methods for dynamic analysis is explored via an example of a flexible rod hit by a rigid ball. Three numerical methods, including the conventional finite element (FE) method, the DSC algorithm, and the spectral finite element (SFE) method, and one proposed modeling strategy, the improved spectral finite element (ISFE) method, are involved. Numerical results are compared with the known analytical solutions to show their efficiency. It is demonstrated that the proposed ISFE modeling strategy with a proper length of con- ventional FE yields the most accurate contact stress among the four investigated models. It is also found that the DSC algorithm is an alternative method for collision problems.展开更多
基金Supported by the National Natural Science Foundation of China(50830201)the Priority Academic Program Development of Jiangsu Higher Education Institutions~~
文摘Impact dynamics of flexible solids is important in engineering practice. Obtaining its dynamic response is a challenging task and usually achieved by numerical methods. The objectives of the study are twofold. Firstly, the discrete singular convolution (DSC) is used for the first time to analyze the impact dynamics. Secondly, the efficiency of various numerical methods for dynamic analysis is explored via an example of a flexible rod hit by a rigid ball. Three numerical methods, including the conventional finite element (FE) method, the DSC algorithm, and the spectral finite element (SFE) method, and one proposed modeling strategy, the improved spectral finite element (ISFE) method, are involved. Numerical results are compared with the known analytical solutions to show their efficiency. It is demonstrated that the proposed ISFE modeling strategy with a proper length of con- ventional FE yields the most accurate contact stress among the four investigated models. It is also found that the DSC algorithm is an alternative method for collision problems.