Planting trees was used as one of cost-effective measures for desertification control in add and semi-add areas of China. Woodland degradation, however, is becoming an inevitable issue in these areas. In this paper, a...Planting trees was used as one of cost-effective measures for desertification control in add and semi-add areas of China. Woodland degradation, however, is becoming an inevitable issue in these areas. In this paper, a typical county, Ejin Holo County, Inner Mongolia, China was selected for its assessment of artificial woodland degradation. A conceptual model for woodland degradation was delineated qualitatively based on field sampling survey, and four model-based indicators as humidity index (HI), vegetation index (NDVI), soil type (ST) and soil erosion modulus (EM) were screened out and used to a GIS-based method for artificial woodland degradation assessment in this semi-add agro-pastoral transitional area. All the indicator layers were overlaid and desertification assessed using simplified equation with equal weights for each indicators. The assessment results showed that in 336. 09 km^2 of total woodland area, 311.35 km^2 woodland were under degradation, and the area for slight, medium, severe degradation was 78.97, 119.73 and 112.65 km^2, respectively. It was suggested that much attention should be paid on woodland improvement and plant species selection, especially shrub species, before revegetation in similar areas.展开更多
The problems in calculating parameters of equivalent collection area,earth resistivity and lightning protection category as well as their effects on lightning disaster risk assessment were analyzed,and practical examp...The problems in calculating parameters of equivalent collection area,earth resistivity and lightning protection category as well as their effects on lightning disaster risk assessment were analyzed,and practical examples proved the effects of those differences on lightning protection identification,intercept efficiency calculation in evaluating lightning disaster risk. In the meantime,several new concepts,such as the height of buildings for lightning protection were defined,and a fixed radius value was set to the ground flash density for calculation,establishing the ground flash density formula to solve the problems in parameter calculation,which would be beneficial to promote the standardization of lightning disaster risk assessment.展开更多
Subject Code:C03 With the support by the National Natural Science Foundation of China and Ministry of Science and Technology of China,the research team led by Dr.Wu Ruidong(武瑞东)from Yunnan University reveals severa...Subject Code:C03 With the support by the National Natural Science Foundation of China and Ministry of Science and Technology of China,the research team led by Dr.Wu Ruidong(武瑞东)from Yunnan University reveals several key limitations in the study of global roadless areas mapping and assessment,which was展开更多
Single-sensor monitoring of flood events at high spatial and temporal resolutions is difficult because of the lack of data owing to instrument defects,cloud contamination,imaging geometry.However,combining multisensor...Single-sensor monitoring of flood events at high spatial and temporal resolutions is difficult because of the lack of data owing to instrument defects,cloud contamination,imaging geometry.However,combining multisensor data provides an impressive solution to this problem.In this study,11 synthetic aperture radar(SAR)images and 13 optical images were collected from the Google Earth Engine(GEE)platform during the Sardoba Reservoir flood event to constitute a time series dataset.Threshold-based and indices-based methods were used for SAR and optical data,respectively,to extract the water extent.The final sequential flood water maps were obtained by fusing the results from multisensor time series imagery.Experiments show that,when compare with the Global Surface Water Dynamic(GSWD)dataset,the overall accuracy and Kappa coefficient of the water body extent extracted by our methods range from 98.8%to 99.1%and 0.839 to 0.900,respectively.The flooded extent and area increased sharply to a maximum between May 1 and May 4,and then experienced a sustained decline over time.The flood lasted for more than a month in the lowland areas in the north,indicating that the northern region is severely affected.Land cover changes could be detected using the temporal spectrum analysis,which indicated that detailed temporal information benefiting from the multisensor data is highly important for time series analyses.展开更多
Low-impact development (LID) technologies, such as bioretention areas, rooftop rainwater harvesting, a_nd xeris_caping can co_ntrol stormwater runoff, supply non-potable water, and landscape open space.TillS study e...Low-impact development (LID) technologies, such as bioretention areas, rooftop rainwater harvesting, a_nd xeris_caping can co_ntrol stormwater runoff, supply non-potable water, and landscape open space.TillS study examines a hybrid system (HS) that combines LID technologies with a centralized water system to lessen the burden on a conventional system (CS). CS is defined as the stormwater collection and water supply infrastructure, and the conventional landscaping choices in the City of Atlanta. The study scope is limited to five single-family residential zones (SFZs), classified R-1 through R-5, and four multi-family residential zones (MFZs), classified RG-2 through RG-5. Population density increases from 0.4 (R-1) to 62.2 (RG-5) persons per 1,000 m2. We performed a life cycle assessment (LCA) comparison of CS and HS using TRACI 2.1 to simulate impacts on the ecosystem, human health, and natural resources. We quantified the impact of freshwater consumption using the freshwater ecosystem impact (FEI) indicator. Test results indicate that HS has a higher LCA single score than CS in zones with a low population density; however, the difference becomes negligible as population density increases. Incorporating LID in SFZs and MFZs can reduce potable water use by an average of 50%. and 25%,respectively.; however, water savings are negligible in zones with high population density (i.e., RG-5) due to the diminished surface area per capitaavailable for LID technoogies. The results demonstrate that LID technologies effectively reduce outdoor water demand and therefore would be a good choice to decrease the water consumption impact in the City of Atlanta.展开更多
基金This paper is funded by National Natural Science Fund (30171205) and National Tenth-year-plan Key Sci&tech Project (2005BA517A04)
文摘Planting trees was used as one of cost-effective measures for desertification control in add and semi-add areas of China. Woodland degradation, however, is becoming an inevitable issue in these areas. In this paper, a typical county, Ejin Holo County, Inner Mongolia, China was selected for its assessment of artificial woodland degradation. A conceptual model for woodland degradation was delineated qualitatively based on field sampling survey, and four model-based indicators as humidity index (HI), vegetation index (NDVI), soil type (ST) and soil erosion modulus (EM) were screened out and used to a GIS-based method for artificial woodland degradation assessment in this semi-add agro-pastoral transitional area. All the indicator layers were overlaid and desertification assessed using simplified equation with equal weights for each indicators. The assessment results showed that in 336. 09 km^2 of total woodland area, 311.35 km^2 woodland were under degradation, and the area for slight, medium, severe degradation was 78.97, 119.73 and 112.65 km^2, respectively. It was suggested that much attention should be paid on woodland improvement and plant species selection, especially shrub species, before revegetation in similar areas.
文摘The problems in calculating parameters of equivalent collection area,earth resistivity and lightning protection category as well as their effects on lightning disaster risk assessment were analyzed,and practical examples proved the effects of those differences on lightning protection identification,intercept efficiency calculation in evaluating lightning disaster risk. In the meantime,several new concepts,such as the height of buildings for lightning protection were defined,and a fixed radius value was set to the ground flash density for calculation,establishing the ground flash density formula to solve the problems in parameter calculation,which would be beneficial to promote the standardization of lightning disaster risk assessment.
文摘Subject Code:C03 With the support by the National Natural Science Foundation of China and Ministry of Science and Technology of China,the research team led by Dr.Wu Ruidong(武瑞东)from Yunnan University reveals several key limitations in the study of global roadless areas mapping and assessment,which was
基金funded by the National Natural Science Foundation of China(Nos.41474010,61401509)。
文摘Single-sensor monitoring of flood events at high spatial and temporal resolutions is difficult because of the lack of data owing to instrument defects,cloud contamination,imaging geometry.However,combining multisensor data provides an impressive solution to this problem.In this study,11 synthetic aperture radar(SAR)images and 13 optical images were collected from the Google Earth Engine(GEE)platform during the Sardoba Reservoir flood event to constitute a time series dataset.Threshold-based and indices-based methods were used for SAR and optical data,respectively,to extract the water extent.The final sequential flood water maps were obtained by fusing the results from multisensor time series imagery.Experiments show that,when compare with the Global Surface Water Dynamic(GSWD)dataset,the overall accuracy and Kappa coefficient of the water body extent extracted by our methods range from 98.8%to 99.1%and 0.839 to 0.900,respectively.The flooded extent and area increased sharply to a maximum between May 1 and May 4,and then experienced a sustained decline over time.The flood lasted for more than a month in the lowland areas in the north,indicating that the northern region is severely affected.Land cover changes could be detected using the temporal spectrum analysis,which indicated that detailed temporal information benefiting from the multisensor data is highly important for time series analyses.
基金Acknowledgements This research was sponsored by the Brook Byers Institute for Sustainable Systems, Hightower Chair, and the Georgia Research Alliance at the Georgia Institute of Technology. This work was also supported by a grant for "Resilient Interdependent Infrastructure Processes and Systems (RIPS) Type 2: Participatory Modeling of Complex Urban Infrastructure Systems (Model Urban SysTems)," (#0836046) from National Science Foundation, Division of Emerging Frontiers in Research and Innovations (EFRI). The authors also acknowledge the support of Crittenden and Associates.
文摘Low-impact development (LID) technologies, such as bioretention areas, rooftop rainwater harvesting, a_nd xeris_caping can co_ntrol stormwater runoff, supply non-potable water, and landscape open space.TillS study examines a hybrid system (HS) that combines LID technologies with a centralized water system to lessen the burden on a conventional system (CS). CS is defined as the stormwater collection and water supply infrastructure, and the conventional landscaping choices in the City of Atlanta. The study scope is limited to five single-family residential zones (SFZs), classified R-1 through R-5, and four multi-family residential zones (MFZs), classified RG-2 through RG-5. Population density increases from 0.4 (R-1) to 62.2 (RG-5) persons per 1,000 m2. We performed a life cycle assessment (LCA) comparison of CS and HS using TRACI 2.1 to simulate impacts on the ecosystem, human health, and natural resources. We quantified the impact of freshwater consumption using the freshwater ecosystem impact (FEI) indicator. Test results indicate that HS has a higher LCA single score than CS in zones with a low population density; however, the difference becomes negligible as population density increases. Incorporating LID in SFZs and MFZs can reduce potable water use by an average of 50%. and 25%,respectively.; however, water savings are negligible in zones with high population density (i.e., RG-5) due to the diminished surface area per capitaavailable for LID technoogies. The results demonstrate that LID technologies effectively reduce outdoor water demand and therefore would be a good choice to decrease the water consumption impact in the City of Atlanta.