Seeds have been categorized as orthodox, recalcitrant and intermediate seeds according to their dehydration behaviors. Identification of desiccation-tolerance and -sensitivity of seeds is the basis making storage stra...Seeds have been categorized as orthodox, recalcitrant and intermediate seeds according to their dehydration behaviors. Identification of desiccation-tolerance and -sensitivity of seeds is the basis making storage strategy of seeds and long-term conservation of species gene resources. In addition to the inherent characteristics of the species, developmental status of the seeds, dehydration rate, and the conditions under which they are dried and subsequently re-imbibed are very important factors influencing desiccation tolerance of seeds. Survival, electrolyte leakage rate, and germination/growth rate produced by survived seeds are a excellent synthetic parameter when discussing desiccation tolerance of seeds. Desiccation tolerance of seeds is a quantitative feature. The term 'critical water content' is incorrect and has caused some confusion in assessment of seed recalcitrance. A new working approach to quantify the degree of seed recalcitrance has been proposed in this paper.展开更多
Glutenite(coarse-grained clastic)reservoirs of intergranularesecondary dissolution pore type are dominated by residual intergranular pores and secondary dissolution pores,and characterized by low porosity,low permeabi...Glutenite(coarse-grained clastic)reservoirs of intergranularesecondary dissolution pore type are dominated by residual intergranular pores and secondary dissolution pores,and characterized by low porosity,low permeability,strong heterogeneity,and highly variable physical properties.It is difficult to conduct a quantitative quality assessment of these reservoirs while their primary control factors remain unclear.In this paper,experimental core data and drilling,logging and seismic data are used to assess the effect of sedimentary facies on reservoir quality.Favorable sedimentary facies zones are identified by analyzing the characteristics of glutenite reservoirs,which includes investigating rock components and their effects on reservoir quality.Argillaceous matrix content and rigid particle content are identified as the primary control factors for these reservoirs.Logging curves sensitive to reservoir quality are selected and examined to continuously characterize the physical parameters of the reservoirs.It establishes a calculation model of reservoir assessment parameters through multivariate regression and determines the quantitative assessment parameter Fr.The quality of the glutenite reservoirs is defined using conventional logging curves.This study also predicts the plane distribution of high-quality reservoirs through geostatistical inversion of the reservoir assessment parameters based on conventional wave impedance inversion,thus providing insight and guidance for quantitative assessment and quality prediction of glutenite reservoirs of the intergranular-secondary dissolution pore type.The application of this method to well deployment based on qualitative evaluation of the glutenite reservoirs in oilfields yielded favorable results.展开更多
文摘Seeds have been categorized as orthodox, recalcitrant and intermediate seeds according to their dehydration behaviors. Identification of desiccation-tolerance and -sensitivity of seeds is the basis making storage strategy of seeds and long-term conservation of species gene resources. In addition to the inherent characteristics of the species, developmental status of the seeds, dehydration rate, and the conditions under which they are dried and subsequently re-imbibed are very important factors influencing desiccation tolerance of seeds. Survival, electrolyte leakage rate, and germination/growth rate produced by survived seeds are a excellent synthetic parameter when discussing desiccation tolerance of seeds. Desiccation tolerance of seeds is a quantitative feature. The term 'critical water content' is incorrect and has caused some confusion in assessment of seed recalcitrance. A new working approach to quantify the degree of seed recalcitrance has been proposed in this paper.
基金the National Natural Science Foundation of China(Grant No.:41872116)early projects initiated by the China National Petroleum Corporation‘Assessment of Permian and Triassic Hydrocarbon Accumulation Conditions and Targets in the Junggar Basin’and‘Assessment of Carboniferous Hydrocarbon Accumulation Conditions and Zones in the Junggar Basin’.
文摘Glutenite(coarse-grained clastic)reservoirs of intergranularesecondary dissolution pore type are dominated by residual intergranular pores and secondary dissolution pores,and characterized by low porosity,low permeability,strong heterogeneity,and highly variable physical properties.It is difficult to conduct a quantitative quality assessment of these reservoirs while their primary control factors remain unclear.In this paper,experimental core data and drilling,logging and seismic data are used to assess the effect of sedimentary facies on reservoir quality.Favorable sedimentary facies zones are identified by analyzing the characteristics of glutenite reservoirs,which includes investigating rock components and their effects on reservoir quality.Argillaceous matrix content and rigid particle content are identified as the primary control factors for these reservoirs.Logging curves sensitive to reservoir quality are selected and examined to continuously characterize the physical parameters of the reservoirs.It establishes a calculation model of reservoir assessment parameters through multivariate regression and determines the quantitative assessment parameter Fr.The quality of the glutenite reservoirs is defined using conventional logging curves.This study also predicts the plane distribution of high-quality reservoirs through geostatistical inversion of the reservoir assessment parameters based on conventional wave impedance inversion,thus providing insight and guidance for quantitative assessment and quality prediction of glutenite reservoirs of the intergranular-secondary dissolution pore type.The application of this method to well deployment based on qualitative evaluation of the glutenite reservoirs in oilfields yielded favorable results.