As threats of landslide hazards have become gradually more severe in recent decades,studies on landslide prevention and mitigation have attracted widespread attention in relevant domains.A hot research topic has been ...As threats of landslide hazards have become gradually more severe in recent decades,studies on landslide prevention and mitigation have attracted widespread attention in relevant domains.A hot research topic has been the ability to predict landslide susceptibility,which can be used to design schemes of land exploitation and urban development in mountainous areas.In this study,the teaching-learning-based optimization(TLBO)and satin bowerbird optimizer(SBO)algorithms were applied to optimize the adaptive neuro-fuzzy inference system(ANFIS)model for landslide susceptibility mapping.In the study area,152 landslides were identified and randomly divided into two groups as training(70%)and validation(30%)dataset.Additionally,a total of fifteen landslide influencing factors were selected.The relative importance and weights of various influencing factors were determined using the step-wise weight assessment ratio analysis(SWARA)method.Finally,the comprehensive performance of the two models was validated and compared using various indexes,such as the root mean square error(RMSE),processing time,convergence,and area under receiver operating characteristic curves(AUROC).The results demonstrated that the AUROC values of the ANFIS,ANFIS-TLBO and ANFIS-SBO models with the training data were 0.808,0.785 and 0.755,respectively.In terms of the validation dataset,the ANFISSBO model exhibited a higher AUROC value of 0.781,while the AUROC value of the ANFIS-TLBO and ANFIS models were 0.749 and 0.681,respectively.Moreover,the ANFIS-SBO model showed lower RMSE values for the validation dataset,indicating that the SBO algorithm had a better optimization capability.Meanwhile,the processing time and convergence of the ANFIS-SBO model were far superior to those of the ANFIS-TLBO model.Therefore,both the ensemble models proposed in this paper can generate adequate results,and the ANFIS-SBO model is recommended as the more suitable model for landslide susceptibility assessment in the study area considered due to its excellent accuracy and efficiency.展开更多
Data processing of small samples is an important and valuable research problem in the electronic equipment test. Because it is difficult and complex to determine the probability distribution of small samples, it is di...Data processing of small samples is an important and valuable research problem in the electronic equipment test. Because it is difficult and complex to determine the probability distribution of small samples, it is difficult to use the traditional probability theory to process the samples and assess the degree of uncertainty. Using the grey relational theory and the norm theory, the grey distance information approach, which is based on the grey distance information quantity of a sample and the average grey distance information quantity of the samples, is proposed in this article. The definitions of the grey distance information quantity of a sample and the average grey distance information quantity of the samples, with their characteristics and algorithms, are introduced. The correlative problems, including the algorithm of estimated value, the standard deviation, and the acceptance and rejection criteria of the samples and estimated results, are also proposed. Moreover, the information whitening ratio is introduced to select the weight algorithm and to compare the different samples. Several examples are given to demonstrate the application of the proposed approach. The examples show that the proposed approach, which has no demand for the probability distribution of small samples, is feasible and effective.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.41807192,41790441)Innovation Capability Support Program of Shaanxi(Grant No.2020KJXX-005)Natural Science Basic Research Program of Shaanxi(Grant Nos.2019JLM-7,2019JQ-094)。
文摘As threats of landslide hazards have become gradually more severe in recent decades,studies on landslide prevention and mitigation have attracted widespread attention in relevant domains.A hot research topic has been the ability to predict landslide susceptibility,which can be used to design schemes of land exploitation and urban development in mountainous areas.In this study,the teaching-learning-based optimization(TLBO)and satin bowerbird optimizer(SBO)algorithms were applied to optimize the adaptive neuro-fuzzy inference system(ANFIS)model for landslide susceptibility mapping.In the study area,152 landslides were identified and randomly divided into two groups as training(70%)and validation(30%)dataset.Additionally,a total of fifteen landslide influencing factors were selected.The relative importance and weights of various influencing factors were determined using the step-wise weight assessment ratio analysis(SWARA)method.Finally,the comprehensive performance of the two models was validated and compared using various indexes,such as the root mean square error(RMSE),processing time,convergence,and area under receiver operating characteristic curves(AUROC).The results demonstrated that the AUROC values of the ANFIS,ANFIS-TLBO and ANFIS-SBO models with the training data were 0.808,0.785 and 0.755,respectively.In terms of the validation dataset,the ANFISSBO model exhibited a higher AUROC value of 0.781,while the AUROC value of the ANFIS-TLBO and ANFIS models were 0.749 and 0.681,respectively.Moreover,the ANFIS-SBO model showed lower RMSE values for the validation dataset,indicating that the SBO algorithm had a better optimization capability.Meanwhile,the processing time and convergence of the ANFIS-SBO model were far superior to those of the ANFIS-TLBO model.Therefore,both the ensemble models proposed in this paper can generate adequate results,and the ANFIS-SBO model is recommended as the more suitable model for landslide susceptibility assessment in the study area considered due to its excellent accuracy and efficiency.
文摘Data processing of small samples is an important and valuable research problem in the electronic equipment test. Because it is difficult and complex to determine the probability distribution of small samples, it is difficult to use the traditional probability theory to process the samples and assess the degree of uncertainty. Using the grey relational theory and the norm theory, the grey distance information approach, which is based on the grey distance information quantity of a sample and the average grey distance information quantity of the samples, is proposed in this article. The definitions of the grey distance information quantity of a sample and the average grey distance information quantity of the samples, with their characteristics and algorithms, are introduced. The correlative problems, including the algorithm of estimated value, the standard deviation, and the acceptance and rejection criteria of the samples and estimated results, are also proposed. Moreover, the information whitening ratio is introduced to select the weight algorithm and to compare the different samples. Several examples are given to demonstrate the application of the proposed approach. The examples show that the proposed approach, which has no demand for the probability distribution of small samples, is feasible and effective.