The list extremal number f(G) is defined for a graph G as the smallest integer k such that the join of G with a stable set of size k is not |V(G)|-choosable. In this paper, we find the exact value of f(G), whe...The list extremal number f(G) is defined for a graph G as the smallest integer k such that the join of G with a stable set of size k is not |V(G)|-choosable. In this paper, we find the exact value of f(G), where G is the union of edge-disjoint cycles of length three, four, five and six. Our results confirm two conjectures posed by S. Gravier, F. Maffray and B. Mohar.展开更多
如何在不确定的复杂环境下优化分配有限的传感器资源是传感器管理系统中的一个关键问题.在用区间数来描述这种不确定性研究思路的基础上,提出了一种新的区间数型多因素指派模型的求解方法.首先,给出了拓展的区间数型多因素指派模型.然后...如何在不确定的复杂环境下优化分配有限的传感器资源是传感器管理系统中的一个关键问题.在用区间数来描述这种不确定性研究思路的基础上,提出了一种新的区间数型多因素指派模型的求解方法.首先,给出了拓展的区间数型多因素指派模型.然后,采用不确定有序加权平均(Uncertain ordered weighted average,UOWA)算子集结规范化后的区间数型效率矩阵,通过逼近理想解的排序法(Technique for order preference by similarity to ideal solution,TOPSIS)确定综合效率矩阵.进一步将其转化为标准型指派问题,最后通过匈牙利法得到最优解.通过算例说明了该方法解决多传感器优化分配问题的有效性.展开更多
文摘The list extremal number f(G) is defined for a graph G as the smallest integer k such that the join of G with a stable set of size k is not |V(G)|-choosable. In this paper, we find the exact value of f(G), where G is the union of edge-disjoint cycles of length three, four, five and six. Our results confirm two conjectures posed by S. Gravier, F. Maffray and B. Mohar.
文摘如何在不确定的复杂环境下优化分配有限的传感器资源是传感器管理系统中的一个关键问题.在用区间数来描述这种不确定性研究思路的基础上,提出了一种新的区间数型多因素指派模型的求解方法.首先,给出了拓展的区间数型多因素指派模型.然后,采用不确定有序加权平均(Uncertain ordered weighted average,UOWA)算子集结规范化后的区间数型效率矩阵,通过逼近理想解的排序法(Technique for order preference by similarity to ideal solution,TOPSIS)确定综合效率矩阵.进一步将其转化为标准型指派问题,最后通过匈牙利法得到最优解.通过算例说明了该方法解决多传感器优化分配问题的有效性.