As water reuse development has increased,biological stability issues associated with reclaimed water have gained attention.This study evaluated assimilable organic carbon(AOC)in effluents from a full-scale membrane bi...As water reuse development has increased,biological stability issues associated with reclaimed water have gained attention.This study evaluated assimilable organic carbon(AOC)in effluents from a full-scale membrane biological reactor(MBR)plant and found that they were generally stable over one year(125-216µg/L),with slight increases in warmer seasons.After additional tertiary treatments,the largest increases in absolute and specific AOCs were detected during ozonation,followed by coagulation-ozonation and coagulation.Moreover,UV254 absorbance is known to be an effective surrogate to predict the AOC changes during ozonation.Applying coagulation prior to ozonation of MBR effluents for removal of large molecules was found to reduce the AOC formation compared with ozonation treatment alone.Finally,the results revealed that attention should be paid to seasonal variations in influent and organic fraction changes during treatment to enable sustainable water reuse.展开更多
Microbial growth is an issue of concern that may cause hygienic and aesthetic problems during the transportation and usage of reclaimed water. Assimilable organic carbon (AOC) is an important parameter which determi...Microbial growth is an issue of concern that may cause hygienic and aesthetic problems during the transportation and usage of reclaimed water. Assimilable organic carbon (AOC) is an important parameter which determines the heterotrophic bacterial growth potential of water. Pseudomonas fluorescens P17 and Spirillum sp. NOX are widely used to measure AOC in drinking water. The AOC values of various reclaimed water samples determined by P 17 and NOX were compared with those determined by the new strains isolated from reclaimed water in this study. It showed that the conventional test strains were not suitable for AOC measurement of reclaimed water in certain cases. In addition to P17 and NOX, Stenotrophomonas sp. Z J2, Pseudomonas saponi- phila G3 and Enterobacter sp. G6, were selected as test strains for AOC measurement of reclaimed water. Key aspects of the bioassay including inoculum cell density, incubation temperature, incubation time and the pH of samples were evaluated for the newly selected test strains. Higher inoculum density (104 CFU.mL-1) and higher incubation temperature (25℃) could reduce the time required for the tests. The AOC results of various collected samples showed the advantages of the method proposed based on those five strains in evaluating the biologic stability of reclaimed water.展开更多
The object of is to evaluate assimilable organic carbon(AOC) degradation rate by intensified biological technique in advanced water treatment. By artificially acclimating and cultivating strains attached onto carbon...The object of is to evaluate assimilable organic carbon(AOC) degradation rate by intensified biological technique in advanced water treatment. By artificially acclimating and cultivating strains attached onto carbon surface, the selected strains can be intensified for their degradation to organic matters. The research indicates that ozonation process increases AOC concentration considerably, however, it is beneficial to microdegradation. Temperature and empty bed contact time ( TEBC ) are two important factors affecting microbiology. From 14 to 27 ℃, intensified biological carbon can remove AOC better compared with granular activated carbon (GAC). Under identical TERC, intensified technique increases more than 10% AOC reduction.展开更多
Additional phosphorus will be introduced to water sample if the conventional procedure is used to measure assimilable organic carbon(AOC) in drinking water. It has been shown that there are the cases that phosphorus i...Additional phosphorus will be introduced to water sample if the conventional procedure is used to measure assimilable organic carbon(AOC) in drinking water. It has been shown that there are the cases that phosphorus is the limiting nutrient for microbial growth in drinking water. The measured value of AOC would not be able to indicate appropriately the regrowth potential of bacteria in this case. The conventional procedure used to measure AOC was modified to avoid the introduction of additional phosphorus to water sample in this study. It was shown that it was feasible to measure AOC in water using the modified procedure. Furthermore, the measured value of AOC determined by the modified procedure could indicate appropriately the regrowth potential of bacteria in drinking water despite either organics or phosphorus was the limiting nutrient for bacterial regrowth.展开更多
This study investigated the chlorination of Microcystis aeruginosa extracellular organic matter(EOM) solutions under different conditions, to determine how the metabolites produced by these organisms affect water sa...This study investigated the chlorination of Microcystis aeruginosa extracellular organic matter(EOM) solutions under different conditions, to determine how the metabolites produced by these organisms affect water safety and the formation of assimilable organic carbon(AOC). The effects of chlorine dosages, coagulant dosage, reaction time and temperature on the formation of AOC were investigated during the disinfection of M.aeruginosa metabolite solutions. The concentration of AOC followed a decreasing and then increasing pattern with increasing temperature and reaction time. The concentration of AOC decreased and then increased with increasing chlorination dosage, followed by a slight decrease at the highest level of chlorination. However, the concentration of AOC decreased continuously with increasing coagulant dosage. The formation of AOC can be suppressed under appropriate conditions. In this study, chlorination at 4 mg/L, combined with a coagulant dose of 40 mg/L at 20°C over a reaction time of 12 hr, produced the minimum AOC.展开更多
基金This work was supported by the Key Program of the National Natural Science Foundation of China(No.51738005)the Youth Program of National Natural Science Foundation of China(No.51908317).
文摘As water reuse development has increased,biological stability issues associated with reclaimed water have gained attention.This study evaluated assimilable organic carbon(AOC)in effluents from a full-scale membrane biological reactor(MBR)plant and found that they were generally stable over one year(125-216µg/L),with slight increases in warmer seasons.After additional tertiary treatments,the largest increases in absolute and specific AOCs were detected during ozonation,followed by coagulation-ozonation and coagulation.Moreover,UV254 absorbance is known to be an effective surrogate to predict the AOC changes during ozonation.Applying coagulation prior to ozonation of MBR effluents for removal of large molecules was found to reduce the AOC formation compared with ozonation treatment alone.Finally,the results revealed that attention should be paid to seasonal variations in influent and organic fraction changes during treatment to enable sustainable water reuse.
文摘Microbial growth is an issue of concern that may cause hygienic and aesthetic problems during the transportation and usage of reclaimed water. Assimilable organic carbon (AOC) is an important parameter which determines the heterotrophic bacterial growth potential of water. Pseudomonas fluorescens P17 and Spirillum sp. NOX are widely used to measure AOC in drinking water. The AOC values of various reclaimed water samples determined by P 17 and NOX were compared with those determined by the new strains isolated from reclaimed water in this study. It showed that the conventional test strains were not suitable for AOC measurement of reclaimed water in certain cases. In addition to P17 and NOX, Stenotrophomonas sp. Z J2, Pseudomonas saponi- phila G3 and Enterobacter sp. G6, were selected as test strains for AOC measurement of reclaimed water. Key aspects of the bioassay including inoculum cell density, incubation temperature, incubation time and the pH of samples were evaluated for the newly selected test strains. Higher inoculum density (104 CFU.mL-1) and higher incubation temperature (25℃) could reduce the time required for the tests. The AOC results of various collected samples showed the advantages of the method proposed based on those five strains in evaluating the biologic stability of reclaimed water.
基金Sponsored by China Postdoctoral Science Foundation (Grant No.20060400178) and Shanghai Postdoctoral Scientific Program(Grant No.06R214204).
文摘The object of is to evaluate assimilable organic carbon(AOC) degradation rate by intensified biological technique in advanced water treatment. By artificially acclimating and cultivating strains attached onto carbon surface, the selected strains can be intensified for their degradation to organic matters. The research indicates that ozonation process increases AOC concentration considerably, however, it is beneficial to microdegradation. Temperature and empty bed contact time ( TEBC ) are two important factors affecting microbiology. From 14 to 27 ℃, intensified biological carbon can remove AOC better compared with granular activated carbon (GAC). Under identical TERC, intensified technique increases more than 10% AOC reduction.
文摘Additional phosphorus will be introduced to water sample if the conventional procedure is used to measure assimilable organic carbon(AOC) in drinking water. It has been shown that there are the cases that phosphorus is the limiting nutrient for microbial growth in drinking water. The measured value of AOC would not be able to indicate appropriately the regrowth potential of bacteria in this case. The conventional procedure used to measure AOC was modified to avoid the introduction of additional phosphorus to water sample in this study. It was shown that it was feasible to measure AOC in water using the modified procedure. Furthermore, the measured value of AOC determined by the modified procedure could indicate appropriately the regrowth potential of bacteria in drinking water despite either organics or phosphorus was the limiting nutrient for bacterial regrowth.
基金supported by the National Natural Science Foundation of China (No. 503780262)the Supporting Certificate of China Postdoctoral Science Foundation (No. 20070420882)the National Natural Science Foundation of Heilongjiang Province of China (No. E200812)
文摘This study investigated the chlorination of Microcystis aeruginosa extracellular organic matter(EOM) solutions under different conditions, to determine how the metabolites produced by these organisms affect water safety and the formation of assimilable organic carbon(AOC). The effects of chlorine dosages, coagulant dosage, reaction time and temperature on the formation of AOC were investigated during the disinfection of M.aeruginosa metabolite solutions. The concentration of AOC followed a decreasing and then increasing pattern with increasing temperature and reaction time. The concentration of AOC decreased and then increased with increasing chlorination dosage, followed by a slight decrease at the highest level of chlorination. However, the concentration of AOC decreased continuously with increasing coagulant dosage. The formation of AOC can be suppressed under appropriate conditions. In this study, chlorination at 4 mg/L, combined with a coagulant dose of 40 mg/L at 20°C over a reaction time of 12 hr, produced the minimum AOC.