Regulating interlayer distance is a crucial factor in the development of two‐dimensional(2D)nanomaterials.A 2D metal‐free photocatalyst,such as graphitic carbon nitride(g‐C3N4),exhibits morphology‐and microstruct...Regulating interlayer distance is a crucial factor in the development of two‐dimensional(2D)nanomaterials.A 2D metal‐free photocatalyst,such as graphitic carbon nitride(g‐C3N4),exhibits morphology‐and microstructure‐dependent photocatalytic activity.Herein,we report a straightforward and facile route for the preparation of unique lamellar g‐C3N4,by co‐firing melamine and ammonium chloride via microwave‐assisted heating.Through the decomposition of NH4Cl,the evaporation of NH3 gas can effectively overcome van der Waals forces,expanding the interlayer distance of g‐C3N4,thereby creating a lamellar structure consisting of nanosheets.Compared with bulk g‐C3N4,the NH3‐derived lamellar g‐C3N4 exhibits a larger specific surface area and enhanced optical absorption capability,which increase photocatalytic hydrogen production because of the highly active structure,excellent utilization efficiency of photon energy,and low recombination efficiency of photogenerated charge carriers.This study provides a simple strategy for the regulation of the g‐C3N4 microstructure toward highly efficient photocatalytic applications.展开更多
Calorimetric measurements are performed to determine the specific heat of Si-xat.% Ge(where x = 0, 10, 30,50, 70, 90 and 100) alloys within a broad temperature range from 123 to 823 K. The measured specific heat incre...Calorimetric measurements are performed to determine the specific heat of Si-xat.% Ge(where x = 0, 10, 30,50, 70, 90 and 100) alloys within a broad temperature range from 123 to 823 K. The measured specific heat increases dramatically at low temperatures, and the composition dependence of specific heat is evaluated from the experimental results. Meanwhile, the specific heat at constant volume, the thermal expansion, and the bulk modulus of Si and Ge are investigated by the first principle calculations combined with the quasiharmonic approximation. The negative thermal expansion is observed for both Si and Ge. Furthermore, the isobaric specific heat of Si and Ge is calculated correspondingly from OK to their melting points, which is verified by the measured results and accounts for the temperature dependence in a still boarder range.展开更多
Modified electrically assisted(EA) rapid heating of Al–Si-coated hot stamping steel is suggested, and the intermetallic evolution in the coating during heating is experimentally investigated. In the modified EA rapid...Modified electrically assisted(EA) rapid heating of Al–Si-coated hot stamping steel is suggested, and the intermetallic evolution in the coating during heating is experimentally investigated. In the modified EA rapid heating, a continuous electric current for a suitable duration is applied to a specimen to heat it to a temperature slightly below the melting temperature of the coating. The temperature of the specimen is then kept constant for a specified dwell time. The result of the microstructural analysis shows that the modified EA rapid heating could effectively increase the thickness of the intermetallic layer between the coating and steel substrate much faster than conventional furnace heating and induction heating. The effectiveness of EA rapid heating may be due to the athermal effect of the electric current on the mobility of atoms, in addition to the well-known resistance heating effect. EA rapid heating also provides a technical advantage in that partial austenization can be easily achieved by properly placing the electrodes, as demonstrated in the present study.展开更多
文摘Regulating interlayer distance is a crucial factor in the development of two‐dimensional(2D)nanomaterials.A 2D metal‐free photocatalyst,such as graphitic carbon nitride(g‐C3N4),exhibits morphology‐and microstructure‐dependent photocatalytic activity.Herein,we report a straightforward and facile route for the preparation of unique lamellar g‐C3N4,by co‐firing melamine and ammonium chloride via microwave‐assisted heating.Through the decomposition of NH4Cl,the evaporation of NH3 gas can effectively overcome van der Waals forces,expanding the interlayer distance of g‐C3N4,thereby creating a lamellar structure consisting of nanosheets.Compared with bulk g‐C3N4,the NH3‐derived lamellar g‐C3N4 exhibits a larger specific surface area and enhanced optical absorption capability,which increase photocatalytic hydrogen production because of the highly active structure,excellent utilization efficiency of photon energy,and low recombination efficiency of photogenerated charge carriers.This study provides a simple strategy for the regulation of the g‐C3N4 microstructure toward highly efficient photocatalytic applications.
基金Supported by the National Natural Science Foundation of China under Grant Nos 51522102,51734008,51327901 and 51474175
文摘Calorimetric measurements are performed to determine the specific heat of Si-xat.% Ge(where x = 0, 10, 30,50, 70, 90 and 100) alloys within a broad temperature range from 123 to 823 K. The measured specific heat increases dramatically at low temperatures, and the composition dependence of specific heat is evaluated from the experimental results. Meanwhile, the specific heat at constant volume, the thermal expansion, and the bulk modulus of Si and Ge are investigated by the first principle calculations combined with the quasiharmonic approximation. The negative thermal expansion is observed for both Si and Ge. Furthermore, the isobaric specific heat of Si and Ge is calculated correspondingly from OK to their melting points, which is verified by the measured results and accounts for the temperature dependence in a still boarder range.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Ministry of Science,ICT and Future Planning(MSIP)(NRF-2015R1A5A1037627)the Technology Innovation Program(Industrial Strategic Technology Development Program,10044807.Development of technologies for vehicle body part made from UHSS and Al5000 by electrically assisted manufacturing)funded by the Ministry of Trade,Industry and Energy(MOTIE,Korea)
文摘Modified electrically assisted(EA) rapid heating of Al–Si-coated hot stamping steel is suggested, and the intermetallic evolution in the coating during heating is experimentally investigated. In the modified EA rapid heating, a continuous electric current for a suitable duration is applied to a specimen to heat it to a temperature slightly below the melting temperature of the coating. The temperature of the specimen is then kept constant for a specified dwell time. The result of the microstructural analysis shows that the modified EA rapid heating could effectively increase the thickness of the intermetallic layer between the coating and steel substrate much faster than conventional furnace heating and induction heating. The effectiveness of EA rapid heating may be due to the athermal effect of the electric current on the mobility of atoms, in addition to the well-known resistance heating effect. EA rapid heating also provides a technical advantage in that partial austenization can be easily achieved by properly placing the electrodes, as demonstrated in the present study.