There are many proposed optimal or suboptimal al- gorithms to update out-of-sequence measurement(s) (OoSM(s)) for linear-Gaussian systems, but few algorithms are dedicated to track a maneuvering target in clutte...There are many proposed optimal or suboptimal al- gorithms to update out-of-sequence measurement(s) (OoSM(s)) for linear-Gaussian systems, but few algorithms are dedicated to track a maneuvering target in clutter by using OoSMs. In order to address the nonlinear OoSMs obtained by the airborne radar located on a moving platform from a maneuvering target in clut- ter, an interacting multiple model probabilistic data association (IMMPDA) algorithm with the OoSM is developed. To be practical, the algorithm is based on the Earth-centered Earth-fixed (ECEF) coordinate system where it considers the effect of the platform's attitude and the curvature of the Earth. The proposed method is validated through the Monte Carlo test compared with the perfor- mance of the standard IMMPDA algorithm ignoring the OoSM, and the conclusions show that using the OoSM can improve the track- ing performance, and the shorter the lag step is, the greater degree the performance is improved, but when the lag step is large, the performance is not improved any more by using the OoSM, which can provide some references for engineering application.展开更多
An equation for determining the equilibrium association constant (KA) of cyclodextrin inclusion complex with fluorescence anisotropy is derived and used to determine KA of pyrene-B-cyclodextrin inclusion complex. The ...An equation for determining the equilibrium association constant (KA) of cyclodextrin inclusion complex with fluorescence anisotropy is derived and used to determine KA of pyrene-B-cyclodextrin inclusion complex. The existing forms of cyclodextrin inclusion complex in solution, the interaction type of host with guest, and the possibility of application of B-cyclodextrin in the analysis of metal ions using naphthalene derivative as a ligand are discussed based on the equation derived along with the curve of fluorescence anisotropy versus cyclodextrin concentration of guest/cyclodextrin system.展开更多
Genome-Wide Association Studies(GWASs) aim to identify genetic variants that are associated with disease by assaying and analyzing hundreds of thousands of Single Nucleotide Polymorphisms(SNPs). Although tradition...Genome-Wide Association Studies(GWASs) aim to identify genetic variants that are associated with disease by assaying and analyzing hundreds of thousands of Single Nucleotide Polymorphisms(SNPs). Although traditional single-locus statistical approaches have been standardized and led to many interesting findings, a substantial number of recent GWASs indicate that for most disorders, the individual SNPs explain only a small fraction of the genetic causes. Consequently, exploring multi-SNPs interactions in the hope of discovering more significant associations has attracted more attentions. Due to the huge search space for complicated multilocus interactions, many fast and effective methods have recently been proposed for detecting disease-associated epistatic interactions using GWAS data. In this paper, we provide a critical review and comparison of eight popular methods, i.e., BOOST, TEAM, epi Forest, EDCF, SNPHarvester, epi MODE, MECPM, and MIC, which are used for detecting gene-gene interactions among genetic loci. In views of the assumption model on the data and searching strategies, we divide the methods into seven categories. Moreover, the evaluation methodologies,including detecting powers, disease models for simulation, resources of real GWAS data, and the control of false discover rate, are elaborated as references for new approach developers. At the end of the paper, we summarize the methods and discuss the future directions in genome-wide association studies for detecting epistatic interactions.展开更多
基金supported by the National Natural Science Foundation of China(61102168)
文摘There are many proposed optimal or suboptimal al- gorithms to update out-of-sequence measurement(s) (OoSM(s)) for linear-Gaussian systems, but few algorithms are dedicated to track a maneuvering target in clutter by using OoSMs. In order to address the nonlinear OoSMs obtained by the airborne radar located on a moving platform from a maneuvering target in clut- ter, an interacting multiple model probabilistic data association (IMMPDA) algorithm with the OoSM is developed. To be practical, the algorithm is based on the Earth-centered Earth-fixed (ECEF) coordinate system where it considers the effect of the platform's attitude and the curvature of the Earth. The proposed method is validated through the Monte Carlo test compared with the perfor- mance of the standard IMMPDA algorithm ignoring the OoSM, and the conclusions show that using the OoSM can improve the track- ing performance, and the shorter the lag step is, the greater degree the performance is improved, but when the lag step is large, the performance is not improved any more by using the OoSM, which can provide some references for engineering application.
文摘An equation for determining the equilibrium association constant (KA) of cyclodextrin inclusion complex with fluorescence anisotropy is derived and used to determine KA of pyrene-B-cyclodextrin inclusion complex. The existing forms of cyclodextrin inclusion complex in solution, the interaction type of host with guest, and the possibility of application of B-cyclodextrin in the analysis of metal ions using naphthalene derivative as a ligand are discussed based on the equation derived along with the curve of fluorescence anisotropy versus cyclodextrin concentration of guest/cyclodextrin system.
基金supported by the Molecular Basis of Disease (MBD) program at Georgia State Universitysupported in part by the National Natural Science Foundation of China (Nos. 61379108 and 61232001)
文摘Genome-Wide Association Studies(GWASs) aim to identify genetic variants that are associated with disease by assaying and analyzing hundreds of thousands of Single Nucleotide Polymorphisms(SNPs). Although traditional single-locus statistical approaches have been standardized and led to many interesting findings, a substantial number of recent GWASs indicate that for most disorders, the individual SNPs explain only a small fraction of the genetic causes. Consequently, exploring multi-SNPs interactions in the hope of discovering more significant associations has attracted more attentions. Due to the huge search space for complicated multilocus interactions, many fast and effective methods have recently been proposed for detecting disease-associated epistatic interactions using GWAS data. In this paper, we provide a critical review and comparison of eight popular methods, i.e., BOOST, TEAM, epi Forest, EDCF, SNPHarvester, epi MODE, MECPM, and MIC, which are used for detecting gene-gene interactions among genetic loci. In views of the assumption model on the data and searching strategies, we divide the methods into seven categories. Moreover, the evaluation methodologies,including detecting powers, disease models for simulation, resources of real GWAS data, and the control of false discover rate, are elaborated as references for new approach developers. At the end of the paper, we summarize the methods and discuss the future directions in genome-wide association studies for detecting epistatic interactions.