期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Synthesis and self-association of dibenzothiophene derivatives for simulation of hydrogen bonding interaction in asphaltenes
1
作者 Ying-Hui Bian Shao-Tang Xu +4 位作者 Le-Chun Song Yu-Lu Zhou Li-Jun Zhu Yu-Zhi Xiang Dao-Hong Xia 《Petroleum Science》 SCIE CAS CSCD 2015年第3期501-508,共8页
The dibenzothiophene derivatives, namely 2-(dibenzothiophene-2-carbonyl)benzoic acid and 2-(diben- zothiophene-2-carbonyl)alkyl benzoate, were synthesized and characterized by nuclear magnetic resonance (1H NMR)... The dibenzothiophene derivatives, namely 2-(dibenzothiophene-2-carbonyl)benzoic acid and 2-(diben- zothiophene-2-carbonyl)alkyl benzoate, were synthesized and characterized by nuclear magnetic resonance (1H NMR), matrix-assisted laser desorption/ionization time of flight mass spectrometry, and elemental analysis. The self- association behavior of these dibenzothiophene derivatives in CH2C12 and CH3CN was investigated using UV-visible absorption spectroscopy, fourier transform infrared spec- troscopy, and atomic force microscopy. It was found that the carboxylic acid exhibited a strong self-association trend in CH2C12 solution at a concentration of about 5 × 10^-7 M. Hydrogen bonding of carboxyl in the dibenzoth- iophene derivatives was confirmed to be the main driving force for the formation of the carboxylic acid aggregates. 展开更多
关键词 Dibenzothiophene derivatives Association Hydrogen bonding simulation Asphaltenes
下载PDF
Observation of Topological Links Associated with Hopf Insulators in a Solid-State Quantum Simulator
2
作者 袁新星 何丽 +8 位作者 王胜涛 邓东灵 王飞 连文倩 王歆 张楚珩 张慧丽 常秀英 段路明 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第6期14-18,共5页
Hopf insulators are intriguing three-dimensional topological insulators characterized by an integer topological invariant. They originate from the mathematical theory of Hopf fibration and epitomize the deep connectio... Hopf insulators are intriguing three-dimensional topological insulators characterized by an integer topological invariant. They originate from the mathematical theory of Hopf fibration and epitomize the deep connection between knot theory and topological phases of matter, which distinguishes them from other classes of topological insulators. Here, we implement a model Hamiltonian for Hopf insulators in a solid-state quantum simulator and report the first experimental observation of their topological properties, including nontrivial topological links associated with the Hopf fibration and the integer-valued topological invariant obtained from a direct tomographic measurement. Our observation of topological links and Hopf fibration in a quantum simulator opens the door to probe rich topological properties of Hopf insulators in experiments. The quantum simulation and probing methods are also applicable to the study of other intricate three-dimensional topological model Hamiltonians. 展开更多
关键词 Observation of Topological Links associated with Hopf Insulators in a Solid-State Quantum Simulator
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部