Due to the importance of vibration effects on the functional accuracy of mechanical systems,this research aims to develop a precise model of a nonlinearly vibrating single-link mobile flexible manipulator.The manipula...Due to the importance of vibration effects on the functional accuracy of mechanical systems,this research aims to develop a precise model of a nonlinearly vibrating single-link mobile flexible manipulator.The manipulator consists of an elastic arm,a rotary motor,and a rigid carrier,and undergoes general in-plane rigid body motion along with elastic transverse deformation.To accurately model the elastic behavior,Timoshenko’s beam theory is used to describe the flexible arm,which accounts for rotary inertia and shear deformation effects.By applying Newton’s second law,the nonlinear governing equations of motion for the manipulator are derived as a coupled system of ordinary differential equations(ODEs)and partial differential equations(PDEs).Then,the assumed mode method(AMM)is used to solve this nonlinear system of governing equations with appropriate shape functions.The assumed modes can be obtained after solving the characteristic equation of a Timoshenko beam with clamped boundary conditions at one end and an attached mass/inertia at the other.In addition,the effect of the transverse vibration of the inextensible arm on its axial behavior is investigated.Despite the axial rigidity,the effect makes the rigid body dynamics invalid for the axial behavior of the arm.Finally,numerical simulations are conducted to evaluate the performance of the developed model,and the results are compared with those obtained by the finite element approach.The comparison confirms the validity of the proposed dynamic model for the system.According to the mentioned features,this model can be reliable for investigating the system’s vibrational behavior and implementing vibration control algorithms.展开更多
A fuzzy adaptive control method is proposed for a flexible robot manipulator. Due to the structure characteristics of the flexible manipulator, the vibration modes must be controlled to realize the high-precision tip ...A fuzzy adaptive control method is proposed for a flexible robot manipulator. Due to the structure characteristics of the flexible manipulator, the vibration modes must be controlled to realize the high-precision tip position. The Lagrangian principle is utilized to model the dynamic function of the single-degree flexible manipulator incorporating the assumed modes method. Simulation results of the fuzzy adaptive control method in the location control and the trajectory tracking with different tip disturbances are presented and compared with the results of the classic PD control. It shows that the controller can obtain the stable and robust performance.展开更多
采用假设模态法对旋转运动柔性梁的动力特性进行研究,给出简化的控制模型.首先采用 Hamilton 原理和假设模态离散化方法,在计入柔性梁由于横向变形而引起的轴向变形的二阶耦合量的条件下,推导出基于柔性梁变形位移场一阶完备的一次...采用假设模态法对旋转运动柔性梁的动力特性进行研究,给出简化的控制模型.首先采用 Hamilton 原理和假设模态离散化方法,在计入柔性梁由于横向变形而引起的轴向变形的二阶耦合量的条件下,推导出基于柔性梁变形位移场一阶完备的一次近似耦合模型,然后对该模型进行简化,忽略柔性梁纵向变形的影响,给出一次近似简化模型,最后将采用假设模态离散化方法的结果与采用有限元离散化方法的结果进行了对比研究.研究中考虑了两种情况:非惯性系下的动力特性研究和系统大范围运动为未知豹动力特性研究.研究结果显示,当系统大范运动为高速时,在假设模态离散化方法中应增加模态数目,较少的模态数目将导致较大误差.一次近似简化模型能够较好地反映出系统的动力学行为,可用于主动控制设计的研究.展开更多
文摘Due to the importance of vibration effects on the functional accuracy of mechanical systems,this research aims to develop a precise model of a nonlinearly vibrating single-link mobile flexible manipulator.The manipulator consists of an elastic arm,a rotary motor,and a rigid carrier,and undergoes general in-plane rigid body motion along with elastic transverse deformation.To accurately model the elastic behavior,Timoshenko’s beam theory is used to describe the flexible arm,which accounts for rotary inertia and shear deformation effects.By applying Newton’s second law,the nonlinear governing equations of motion for the manipulator are derived as a coupled system of ordinary differential equations(ODEs)and partial differential equations(PDEs).Then,the assumed mode method(AMM)is used to solve this nonlinear system of governing equations with appropriate shape functions.The assumed modes can be obtained after solving the characteristic equation of a Timoshenko beam with clamped boundary conditions at one end and an attached mass/inertia at the other.In addition,the effect of the transverse vibration of the inextensible arm on its axial behavior is investigated.Despite the axial rigidity,the effect makes the rigid body dynamics invalid for the axial behavior of the arm.Finally,numerical simulations are conducted to evaluate the performance of the developed model,and the results are compared with those obtained by the finite element approach.The comparison confirms the validity of the proposed dynamic model for the system.According to the mentioned features,this model can be reliable for investigating the system’s vibrational behavior and implementing vibration control algorithms.
文摘A fuzzy adaptive control method is proposed for a flexible robot manipulator. Due to the structure characteristics of the flexible manipulator, the vibration modes must be controlled to realize the high-precision tip position. The Lagrangian principle is utilized to model the dynamic function of the single-degree flexible manipulator incorporating the assumed modes method. Simulation results of the fuzzy adaptive control method in the location control and the trajectory tracking with different tip disturbances are presented and compared with the results of the classic PD control. It shows that the controller can obtain the stable and robust performance.
文摘采用假设模态法对旋转运动柔性梁的动力特性进行研究,给出简化的控制模型.首先采用 Hamilton 原理和假设模态离散化方法,在计入柔性梁由于横向变形而引起的轴向变形的二阶耦合量的条件下,推导出基于柔性梁变形位移场一阶完备的一次近似耦合模型,然后对该模型进行简化,忽略柔性梁纵向变形的影响,给出一次近似简化模型,最后将采用假设模态离散化方法的结果与采用有限元离散化方法的结果进行了对比研究.研究中考虑了两种情况:非惯性系下的动力特性研究和系统大范围运动为未知豹动力特性研究.研究结果显示,当系统大范运动为高速时,在假设模态离散化方法中应增加模态数目,较少的模态数目将导致较大误差.一次近似简化模型能够较好地反映出系统的动力学行为,可用于主动控制设计的研究.