The petrology, geochronology and geochemistry of the mafic enclaves in the Mid-Late Triassic Jiefangyingzi pluton from Chifeng area, southern Inner Mongolia, in China are studied to reveal their petrogenetic relations...The petrology, geochronology and geochemistry of the mafic enclaves in the Mid-Late Triassic Jiefangyingzi pluton from Chifeng area, southern Inner Mongolia, in China are studied to reveal their petrogenetic relationship with the host pluton. Furthermore, the coeval magmatic assemblage and its petrogenesis on the northern margin of the North China craton(NCC) are studied synthetically to elucidate their tectonic setting and the implications for the destruction of the NCC. Zircon U-Pb dating reveals that the mafic enclaves formed at 230.4 ± 2.2 Ma, which is similar to the age of the host pluton. The most basic mafic enclaves belong to weak alkaline rocks, and they display rare earth element(REE) and trace element normalized patterns and trace element compositions similar to those of ocean island basalt(OIB). In addition, they have positive εNd(t) values(+3.84 to +4.94) similar to those of the Cenozoic basalts on the northern margin of the NCC. All of these geochemical characteristics suggest that the basic mafic rocks originated from the asthenosphere. Petrological and geochemical studies suggest that the Jiefangyingzi pluton and the intermediate mafic enclaves were formed by the mixing of the asthenosphere-derived and crust-derived magmas in different degrees. The Mid-Late Triassic magmatic rocks on the northern margin of the NCC could be classified into three assemblages according to their geochemical compositions: alkaline series, weak alkaline–sub-alkaline series and sub-alkaline series rocks. Petrogenetic analyses suggest that the upwelling of the asthenosphere played an important role in the formation of these Mid-Late Triassic magmatic rocks. Basing on an analysis of regional geological data, we suggest that the northern margin of the NCC underwent destruction due to the upwelling of the asthenosphere during the Mid-Late Triassic, which was induced by the delamination of the root of the collisional orogeny between Sino-Korean and Siberian paleoplates in Late Permian.展开更多
This paper shows that the catastrophe of lithosphere asthenosphere system (LAS) is developed for the Yanshanian metallogenic belt in the East China. Two types of Yanshanian disturbed LAS and metallogenesis in the Eas...This paper shows that the catastrophe of lithosphere asthenosphere system (LAS) is developed for the Yanshanian metallogenic belt in the East China. Two types of Yanshanian disturbed LAS and metallogenesis in the East China are recognized: great lithosphere thinning and thickening in the compressional orogenic environment, and the related Andes type and Hercyn type metallogenesis, respectively. Great amount of the juvenile and hot mantle materials and the reactivated hot lower crustal materials replaced, heated and injected into the cold lithosphere and crust are believed to be a fundamental source and a basic deep environment for the Yanshanian metallogenic explosion. Reactivated and active discontinuities on the lithosphere scale are considered to be the main ore storing space of the metallogenic zone. Large magma tectonic metallogenic system is necessary for the formation of large cluster area of ore deposit. The eastern China is believed to have large potential for prospecting of ore deposits in terms of the metallogenic environment.展开更多
The average density of 3300 kg m-3 is often attributed for the asthenosphere. In this study, we inspect this value by estimating the average value of the(upper) asthenosphere based on applying the gravimetric forward ...The average density of 3300 kg m-3 is often attributed for the asthenosphere. In this study, we inspect this value by estimating the average value of the(upper) asthenosphere based on applying the gravimetric forward modelling of major known lithospheric density structures. The LITHO1.0 global seismic model of the lithospheric density structure is used for this purpose, while considering that the lithosphere-asthenosphere boundary(LAB) is rheological, conventionally taken at the 1300C isotherm,above which the mantle behaves in a rigid fashion and below which it behaves in a ductile fashion.According to our result, the average density of the upper asthenosphere is roughly 3400 kg m-3. This density value closely agrees with the corresponding average value 3371 kg m-3 computed based on an empirical density model provided in the Preliminary Reference Earth Model(PREM), while using the LITHO1.0 LAB depth data. We also demonstrate that the sub-lithospheric mantle gravity map exhibits mainly a thermal signature. The most prominent features in this gravity map are mid-oceanic spearing ridges marked by gravity lows, while oceanic subductions in the West Pacific are characterized by the most pronounced gravity highs.展开更多
Based on the results of multiple geophysical research methods,the lithosphere thicknessisolines of the northeastern margin of Sino-Korean platform and its neighboring area havebeen compiled and the geotectonic signifi...Based on the results of multiple geophysical research methods,the lithosphere thicknessisolines of the northeastern margin of Sino-Korean platform and its neighboring area havebeen compiled and the geotectonic significance and the geodynamic characteristics of depthdistribution of asthenosphere roof have been also discussed.The authors proposed that closerrelation exists between the depth of asthenosphere roof and the tectonic activity as well as themodern faulting and seismic activity from Meso-Cenozoic Era till now.The upper mantleasthenosphere is generally uplift in Hailar basin,Bohal Bay-Xia Liaohe basin andSonghuajiang-Liaohe basin.Meanwhile,there exists modern seismic activity and groundsubsidence in this area.It is result from the uplift of upper mantle asthenosphere.展开更多
There were mighty advances in continental lithosphere study last decade. It is recognized that asthenosphere, which is marked by low-velocity seismic wave, is not only unlike that of ocean in continuity and uniformity...There were mighty advances in continental lithosphere study last decade. It is recognized that asthenosphere, which is marked by low-velocity seismic wave, is not only unlike that of ocean in continuity and uniformity, but also not suitable to continent as the concept of mechanical decoupling zone. The depth and reflection characters of the top of asthenosphere vary in different regions within a continent. Instead of the passive response to plate divergence, asthenosphere plays a very active role in continental dynamics,展开更多
Asthenosphere is a venerable concept based on geological intuition of Reginald Daly nearly 100 years ago. There have been various explanations for the existence of the asthenosphere. The concept of a plume-fed astheno...Asthenosphere is a venerable concept based on geological intuition of Reginald Daly nearly 100 years ago. There have been various explanations for the existence of the asthenosphere. The concept of a plume-fed asthenosphere has been around for a few years due to the ideas put forth by Yamamoto et al.. Using a two-dimensional Cartesian code based on finite-volume method, we have investigated the influences of lower-mantle physical properties on the formation of a low-viscosity zone in the oceanic upper mantle in regions close to a large mantle upwelUng. The rheological law is Newtonian and depends on both temperature and depth. An extended-Boussinesq model is assumed for the energetics and the olivine to spinel, the spinel to perovskite and perovskite to post-perovskite (ppv) phase transitions are considered. We have compared the differences in the behavior of hot upweilings passing through the transition zone in the mid-mantle for a variety of models, starting with constant physical properties in the lower-mantle and culminating with complex models which have the post-perovskite phase transition and depth-dependent coefficient of thermal expansion and thermal conductivity. We found that the formation of the asthenosphere in the upper mantle in the vicinity of large upwellings is facilitated in models where both depth-dependent thermal expansivity and conductivity are included. Models with constant thermal expansivity and thermal conductivity do not produce a hot low-viscosity zone, resembling the asthenosphere. We have also studied the influences of a cylindrical model and found similar results as the Cartesian model with the important difference that upper-mantle temperatures were much cooler than the Cartesian model by about 600 to 700 K. Our findings argue for the potentially important role played by lower-mantle material properties on the development of a plume-fed asthenosphere in the oceanic upper mantle.展开更多
We statistically validate the 2011-2022 earthquake prediction records of Ada, the sixth finalist of the 2nd China AETA in 2021, who made 147 earthquake predictions (including 60% of magnitude 5.5 earthquakes) with a p...We statistically validate the 2011-2022 earthquake prediction records of Ada, the sixth finalist of the 2nd China AETA in 2021, who made 147 earthquake predictions (including 60% of magnitude 5.5 earthquakes) with a prediction accuracy higher than 70% and a confidence level of 95% over a 12-year period. Since the reliable earthquake precursor signals described by Ada and the characteristics of Alfvén waves match quite well, this paper proposes a hypothesis on how earthquakes are triggered based on the Alfvén (Q G) torsional wave model of Gillette et al. When the plume of the upper mantle column intrudes into the magma and lithosphere of the soft flow layer during the exchange of hot and cold molten material masses deep inside the Earth’s interior during ascent and descent, it is possible to form body and surface plasma sheets under certain conditions to form Alfven nonlinear isolated waves, and Alfven waves often perturb the geomagnetic field, releasing huge heat and kinetic energy thus triggering earthquakes. To explain the complex phenomenon of how Ada senses Alvfen waves and how to locate epicenters, we venture to speculate that special magnetosensory cells in a few human bodies can sense earthquake precursors and attempt to hypothesize an algorithm that analyzes how the human biological nervous system encodes and decodes earthquake precursors and explains how human magnetosensory cells can solve complex problems such as predicting earthquake magnitude and locating epicenters.展开更多
The Tianshan Carboniferous post-collisional rift volcanic rocks occur in northwestern China as a large igneous province. Based on petrogeochemical data, the Tianshan Carboniferous post-collisional rift basic lavas can...The Tianshan Carboniferous post-collisional rift volcanic rocks occur in northwestern China as a large igneous province. Based on petrogeochemical data, the Tianshan Carboniferous post-collisional rift basic lavas can be classified into two major magma types: (1) the low-Ti/Y type situated in the eastern-central Tianshan area, which exhibits low Ti/Y (<500), Ce/Yb (<15) and SiO2 (43-55%), and relatively high Fe2O3T (6.4-11.5%); (2) the high-Ti/Y type situated in the western Tianshan area, which has high Ti/Y (>500), Ce/Yb (>11) and SiO2 (49-55%), and relatively low Fe2O3T (5.8-7.8%). Elemental data suggest that chemical variations of the low-Ti/Y and high-Ti/Y lavas cannot be explained by fractional crystallization from a common parental magma. The Tianshan Carboniferous basic lavas originated most likely from an OIB-like asthenospheric mantle source (87Sr/86Sr(t) ≈ 0.703-0.705, eNd(0 = +4 to +7). The crustal contamination and continental lithospheric mantle have also contributed significantly to the formation of the basic lavas of the Tianshan Carboniferous post-collisional rift. The silicic lavas were probably generated by partial melting of the crust. The data of this study show that spatial petrogeochemical variations exist in the Carboniferous post-collisional rift volcanics province in the Tianshan region. Occurrence of the thickest volcanics dominated by tholeiitic lavas may imply that the center of the mantle-melting anomaly (mantle plume) was in the eastern Tianshan area at that time. The basic volcanic magmas in the eastern Tianshan area were generated by a relatively high degree of partial melting of the mantle source around the spinel-garnet transition zone, whereas the alkaline basaltic lavas are of the dominant magma type in the western Tianshan area, which were generated by a low degree of partial melting of the mantle source within the stable garnet region, thus the basic lavas of the western Tianshan area might have resulted from relatively thick lithosphere and low geothermal gradient.展开更多
The Carboniferous-Early Permian rift-related volcanic successions, covering large areas in the Chinese Tianshan and its adjacent areas, make up a newly recognized important Phanerozoic large igneous province in the wo...The Carboniferous-Early Permian rift-related volcanic successions, covering large areas in the Chinese Tianshan and its adjacent areas, make up a newly recognized important Phanerozoic large igneous province in the world, which can be further divided into two sub-provinces: Tianshan and Tarim. The regional unconformity of Lower Carboniferous upon basement or pre-Carboniferous rocks, the ages (360--351 Ma) of the youngest ophiolite and the peak of subduction metamorphism of high pressure-low temperature metamorphic belt and the occurrence of Ni-Cu-bearing mafic-ultramafic intrusion with age of ~352 Ma and A-type granite with age of ~358 Ma reveal that the final closure of the Paleo-Asian Ocean might take place in the Early Mississippian. Our summation shows that at least four criteria, being normally used to identify ancient asthenosphere upwelling (or mantle plumes), are met for this large igneous province: (1) surface uplift prior to magmatism; (2) being associated with continental rifting and breakup events; (3) chemical characteristics of asthenosphere (or plume) derived basalts; (4) close links to large-scale mineralization and the uncontaminated basalts, being analogous to those of many "ore-bearing" large igneous provinces, display Sr-Nd isotopic variations between plume and EMI geochemical signatures, These suggest that a Carboniferous asthenosphere upwelling and an Early Permian plume played the central role in the generation of the Tianshan--Tarim (central Asia) large igneous province.展开更多
The mantle xenoliths in the Quaternary ChangbaishanVolcano in southern Jilin Province contain spinel-facies lherzolites. The equilibration temperatures for these samples range from 902℃ to 1064℃ based on the two-pyr...The mantle xenoliths in the Quaternary ChangbaishanVolcano in southern Jilin Province contain spinel-facies lherzolites. The equilibration temperatures for these samples range from 902℃ to 1064℃ based on the two-pyroxene thermometer of Brey and Kohler (1990), and using the oxybarometry of Nell and Wood (1991), the oxidation state was estimated from FMQ-1.32 to -0.38 with an average value of FMQ-0.81 (n = 8), which is comparable to that of abyssal peridotites and the asthenospheric mantle. ThefO2 values of peridotites, together with their bulk rock compositions (e.g., Mg#, Al2O3, CaO, Ni, Co, Cr) and mineral compositions (e.g., Mg# of olivine and pyroxene, Cr# [=Cr/ [Cr+Al]] and Mg# [=Mg/[Mg+Fe2~] of spinel), suggest that the present-day subcontinental lithospheric mantle (SCLM) beneath the Changbaishan Volcano most likely formed from an upwelling asthenosphere at some time after the late Mesozoic and has undergone a low degree of partial melting. The studied lherzolite xenoliths show low concentrations of S, Cu, and platinum group elements (PGE), which plot a flat pattern on primitive-mantle normalized diagram. Very low concentrations in our samples suggest that PGEs occur as alloys or hosted by silicate and oxide minerals. The compositions of the studied samples are similar to those of peridotite xenoliths in the Longgang volcanic field (LVF) in their mineralogy and bulk rock compositions including the abundance of chalcophile and siderophile elements. However, they are distinctly different from those of peridotite xenoliths in other areas of the North China Craton (NCC) in terms of Cu, S and PGE. Our data suggest that the SCLM underlying the northeastern part of the NCC may represent a distinct unit of the newly formed lithospberic mantle.展开更多
esozoic volcanic rocks developed on the basement of the Precambrian block and Hercynina orogenic belt surrounding Songliao basin. The volcanism was actived from Early Jurassic to Late Cretaceous with its peak time in ...esozoic volcanic rocks developed on the basement of the Precambrian block and Hercynina orogenic belt surrounding Songliao basin. The volcanism was actived from Early Jurassic to Late Cretaceous with its peak time in J3-K1 and the rock types are dominated by high K calcalkaline series, partly consisting of shoshonitic and calcalkaline series. Mesozoic volcanism of studied area may result from decompression melting accompanying uneven extension wide spread at a large area corresponding to the formation of grabens without contemporaneous subduction in J3-K1. The basic volcanics and their differentiates came from an enriched lithospheric mantle. While in K2 the extensional center concentrated at Songliao basin and the equivalent products are basalts rich in Na and poor in K and the magma generated from the top of asthenosphere about 60 km. During this time large Songliao depression was developed.展开更多
The rock series, rock types and Sr-Nd isotopic dating of the Cenozoicvolcanic rocks in the South China Sea are similar to those in its vicinity. On the basis of thespreading age of the South China Sea, the Cenozoic vo...The rock series, rock types and Sr-Nd isotopic dating of the Cenozoicvolcanic rocks in the South China Sea are similar to those in its vicinity. On the basis of thespreading age of the South China Sea, the Cenozoic volcanic rocks are divided into three stages: thepre-spreading stage, the spreading stage and the post-spreading stage. The deep processcharacteristics of the asthenosphere and lithosphere may be inferred from the study on primarybasaltic magma. The top layers of the asthenosphere both in the spreading stage and in thepre-spreading stage are closer to the earth surface than that in the post-spreading stage. From thepre-spreading stage to the spreading stage, the top layer of the asthenosphere decreased in depth,while the amount of interstitial partial melts increased. The evolution of the primary basalticmagma shows a progressive evolution sequence of the rifting volcanism and a faster lithosphericspreading velocity. From the spreading stage to the post-spreading stage, the top layer of theasthenosphere gradually increased in depth, but the amount of interstitial partial melts decreased.The evolution of primary basaltic magma shows a retrogressive evolution sequence of the riftingvolcanism and a gradual decrease in the lithospheric spreading velocity. The depth recognized by thestudy on the Cenozoic volcanism demonstrates the deep environment for the formation and evolutionof the South China Sea.展开更多
The lithospheric structure of China and its adjacent area is very complex and is marked by several prominent characteristics. Firstly, China's continental crust is thick in the west but thins to the east, and thick i...The lithospheric structure of China and its adjacent area is very complex and is marked by several prominent characteristics. Firstly, China's continental crust is thick in the west but thins to the east, and thick in the south but thins to the north. Secondly, the continental crust of the Qinghai--Tibet Plateau has an average thickness of 60-65 km with a maximum thickness of 80 km, whereas in eastern China the average thickness is 30-35 km, with a minimum thickness of only 5 km in the center of the South China Sea. The average thickness of continental crust in China is 47.6 km, which greatly exceeds the global average thickness of 39.2 km. Thirdly, as with the crust, the lithosphere of China and its adja- cent areas shows a general pattern of thicker in the west and south, and thinner in the east and north. The lithosphere of the Qinghai--Tibet Plateau and northwestern China has an average thickness of 165 kin, with a maximum thickness of 180--200 km in the central and eastern parts of the Tarim Basin, Pamir, and Changdu areas. In contrast, the vast areas to the east of the Da Hinggan Ling-Taihang-Wuling Mountains, including the marginal seas, are characterized by lithospheric thicknesses of only 50-85 kin. Fourthly, in western China the lithosphere and asthenosphere behave as a "layered structure", reflecting their dynamic background of plate collision and convergence. The lithosphere and asthenosphere in eastern China display a "block mosaic structure", where the lithosphere is thin and the asthenosphere is very thick, a pattern reflecting the consequences of crustal extension and an upsurge of asthenospheric materials. The latter is responsible for a huge low velocity anomaly at a depth of 85--250 km beneath East Asia and the western Pacific Ocean. Finally, in China there is an age structure of "older in the upper layers and younger in the lower layers" between both the upper and lower crusts and between the crust and the lithospheric mantle.展开更多
Is the westerly rotation of the lithosphere an ephemeral accidental recent phenomenon or is it a stable process of Earth's geodynamics? The reason why the tidal drag has been questioned as the mechanism determinin...Is the westerly rotation of the lithosphere an ephemeral accidental recent phenomenon or is it a stable process of Earth's geodynamics? The reason why the tidal drag has been questioned as the mechanism determining the lithospheric shift relative to the underlying mantle is the apparent too high viscosity of the asthenosphere. However, plate boundaries asymmetries are a robust indication of the 'westerly'decoupling of the entire Earth's outer lithospheric shell and new studies support lower viscosities in the low-velocity layer(LVZ) atop the asthenosphere. Since the solid Earth tide oscillation is longer in one side relative to the other due to the contemporaneous Moon's revolution, we demonstrate that a non-linear rheological behavior is expected in the lithosphere mantle interplay. This may provide a sort of ratchet favoring lowering of the LVZ viscosity under shear, allowing decoupling in the LVZ and triggering the westerly motion of the lithosphere relative to the mantle.展开更多
The present paper describes the characteristics of Cenozoic basalt in the Bohaiwan basin and its implication of the control of deep process over the basin evolution. The large scale Eogene basalts lying on the basemen...The present paper describes the characteristics of Cenozoic basalt in the Bohaiwan basin and its implication of the control of deep process over the basin evolution. The large scale Eogene basalts lying on the basement of the Bohaiwan basin belong to alkaline series and subalkaline series. The basalt magma originates at a depth of 48-76 km and a temperature of 1 300-1 400 ℃ with the mantle partial melting degree of 8%-14%. In Eogene period, the rising of the top of asthenosphere from 100-140 km to 50-70 km led to the strong extension and thinning of the overlying lithosphere, which was stretched at an average rate of 0.41 cm/a and the β value from 1.9 to 2.3. At the same time, it triggered the great scale rifting in the earth crust, forming large rift basins.展开更多
Tectonic uplift producing recent mountain systems has spanned in the Alpine-Himalayan Belt the time interval from Oligocene to Recent (the last 30 - 35 Ma), being divided into two stages. During the first stage, local...Tectonic uplift producing recent mountain systems has spanned in the Alpine-Himalayan Belt the time interval from Oligocene to Recent (the last 30 - 35 Ma), being divided into two stages. During the first stage, local uplands, usually not higher than middle-elevated mountains, rose and their total area increased. During the second stage (the last 5 - 2 Ma) this process was accompanied by a total uplift of the greater part of the belt. As a result, the rate of vertical movements increased, the recent mountain systems were formed, and the coarse molasses accumulated in the adjacent basins. Uplift of the land surface resulting in formation of mountain topography is an isostatic reaction to decompaction of the upper spheres of the Solid Earth. Three factors of the decompaction are discussed in the paper. These are: I, collisional compression, resulting in deformational thickening of the Earth’s crust (folding, thrusting, etc.);II, partial replacing of the lithosphere mantle by the lower-dense asthenosphere material and, as a result, decompaction of the uppermost mantle;and III, retrograde metamorphism of high-metamorphosed rocks within the lower crust and near the crust-mantle boundary and, as a result, decompaction of these rocks. These processes were initiated or facilitated by the lateral asthenosphere flows. According to the seismic tomography data, the flows spread from the stationary developed zone of the rise of deep mantle material that is expressed in the recent structure as the Ethiopian-Afar super-plume. Reworking the 400 - 700-km deep transition layer of the mantle, the sub-lithosphere flows could be enriched in sources of aqueous fluids. The flows and their fluids initiated factors II and III of the tectonic uplift and caused softening and detachment of the lithosphere, facilitating deformational thickening of the Earth’s crust, i.e., the factor I. The latter produced uplands during the entire Oligocene-Quaternary development of the orogenic belt, while the factors II and III manifested themselves only during the second stage of mountain building. The detailed studies in the Central Tien Shan and the Greater Caucasus showed that the acceleration of uplift at the second stage was caused mainly by the factor II in the Central Tien Shan and the factor III in the Greater Caucasus.展开更多
Comprehensive geophysical survey carried out in Western Tibet discovered that there is a layer with low velocity and high electrical conductivity embedded in the depth of 10~25km with a thickness of n km beneath the ...Comprehensive geophysical survey carried out in Western Tibet discovered that there is a layer with low velocity and high electrical conductivity embedded in the depth of 10~25km with a thickness of n km beneath the southern Gandise terrain and the southern Qiangtang terrain respectively. A low velocity body, simultaneously a high electrical conductivity body, exists in the depth of 40km with a thickness of 11~22km, expanding about 100km in NS direction beneath Dongco basin in the northern Gandise.In order to investigate how these layers were formed, more study on deep thermal status is needed.There is neither heat flow values measured on the spot nor thermal parameters measured of the typical rock in Western Tibet. The relations between heat flow values and other geological and geophysical parameters are analyzed. A method to calculate heat flow values and temperature distribution with the depth using the depth of Moho and the depth of the asthenosphere is suggested. In the area where there are both heat flow values measured and the two depths mentioned above, the heat flow values calculated using this method are very similar to the heat flow values measured.展开更多
The review paper summarizes the main results of the electromagnetic induction studies carried out in the Pannonian Basin and Carpathians during the last 30 years . The following conducting formations are discussed in ...The review paper summarizes the main results of the electromagnetic induction studies carried out in the Pannonian Basin and Carpathians during the last 30 years . The following conducting formations are discussed in detail : (1)Crustal conductors in the crystalline basement of the sedimentary basin mainly due to graphitic schist blocks clearly connected to the fracture tectonics of the area ; (2 ) Conducting layer in the lower crust probably due to free fluid deliberated by the dehydration process at temperature of 300-400℃during metamorphism ; (3 ) Conducting asthenosphere due to partial melting at the bottom of the lithosphere ; and (4) Conductivity increases due to olivine-spinel phase transition .All of these phenomena are strongly related to the special thermal state and tectonics of the Pannonian Basin and Carpathians.展开更多
基金funded by the National Key Research and Development Program of China from the Ministry of Science and Technology of China(Grant No.2017YFC0601301)National Natural Science Foundation of China(Grant No.41472055)the China Geological Survey(Grant No.DD20160201-01)。
文摘The petrology, geochronology and geochemistry of the mafic enclaves in the Mid-Late Triassic Jiefangyingzi pluton from Chifeng area, southern Inner Mongolia, in China are studied to reveal their petrogenetic relationship with the host pluton. Furthermore, the coeval magmatic assemblage and its petrogenesis on the northern margin of the North China craton(NCC) are studied synthetically to elucidate their tectonic setting and the implications for the destruction of the NCC. Zircon U-Pb dating reveals that the mafic enclaves formed at 230.4 ± 2.2 Ma, which is similar to the age of the host pluton. The most basic mafic enclaves belong to weak alkaline rocks, and they display rare earth element(REE) and trace element normalized patterns and trace element compositions similar to those of ocean island basalt(OIB). In addition, they have positive εNd(t) values(+3.84 to +4.94) similar to those of the Cenozoic basalts on the northern margin of the NCC. All of these geochemical characteristics suggest that the basic mafic rocks originated from the asthenosphere. Petrological and geochemical studies suggest that the Jiefangyingzi pluton and the intermediate mafic enclaves were formed by the mixing of the asthenosphere-derived and crust-derived magmas in different degrees. The Mid-Late Triassic magmatic rocks on the northern margin of the NCC could be classified into three assemblages according to their geochemical compositions: alkaline series, weak alkaline–sub-alkaline series and sub-alkaline series rocks. Petrogenetic analyses suggest that the upwelling of the asthenosphere played an important role in the formation of these Mid-Late Triassic magmatic rocks. Basing on an analysis of regional geological data, we suggest that the northern margin of the NCC underwent destruction due to the upwelling of the asthenosphere during the Mid-Late Triassic, which was induced by the delamination of the root of the collisional orogeny between Sino-Korean and Siberian paleoplates in Late Permian.
文摘This paper shows that the catastrophe of lithosphere asthenosphere system (LAS) is developed for the Yanshanian metallogenic belt in the East China. Two types of Yanshanian disturbed LAS and metallogenesis in the East China are recognized: great lithosphere thinning and thickening in the compressional orogenic environment, and the related Andes type and Hercyn type metallogenesis, respectively. Great amount of the juvenile and hot mantle materials and the reactivated hot lower crustal materials replaced, heated and injected into the cold lithosphere and crust are believed to be a fundamental source and a basic deep environment for the Yanshanian metallogenic explosion. Reactivated and active discontinuities on the lithosphere scale are considered to be the main ore storing space of the metallogenic zone. Large magma tectonic metallogenic system is necessary for the formation of large cluster area of ore deposit. The eastern China is believed to have large potential for prospecting of ore deposits in terms of the metallogenic environment.
基金the HK science project 1ZE8F: Remote-sensing data for studding the Earth’s and planetary inner structure
文摘The average density of 3300 kg m-3 is often attributed for the asthenosphere. In this study, we inspect this value by estimating the average value of the(upper) asthenosphere based on applying the gravimetric forward modelling of major known lithospheric density structures. The LITHO1.0 global seismic model of the lithospheric density structure is used for this purpose, while considering that the lithosphere-asthenosphere boundary(LAB) is rheological, conventionally taken at the 1300C isotherm,above which the mantle behaves in a rigid fashion and below which it behaves in a ductile fashion.According to our result, the average density of the upper asthenosphere is roughly 3400 kg m-3. This density value closely agrees with the corresponding average value 3371 kg m-3 computed based on an empirical density model provided in the Preliminary Reference Earth Model(PREM), while using the LITHO1.0 LAB depth data. We also demonstrate that the sub-lithospheric mantle gravity map exhibits mainly a thermal signature. The most prominent features in this gravity map are mid-oceanic spearing ridges marked by gravity lows, while oceanic subductions in the West Pacific are characterized by the most pronounced gravity highs.
基金This project was sponsored by the National Science Foundation of China (49674220) and Joint Earthquake Science Foundation of China (95152).
文摘Based on the results of multiple geophysical research methods,the lithosphere thicknessisolines of the northeastern margin of Sino-Korean platform and its neighboring area havebeen compiled and the geotectonic significance and the geodynamic characteristics of depthdistribution of asthenosphere roof have been also discussed.The authors proposed that closerrelation exists between the depth of asthenosphere roof and the tectonic activity as well as themodern faulting and seismic activity from Meso-Cenozoic Era till now.The upper mantleasthenosphere is generally uplift in Hailar basin,Bohal Bay-Xia Liaohe basin andSonghuajiang-Liaohe basin.Meanwhile,there exists modern seismic activity and groundsubsidence in this area.It is result from the uplift of upper mantle asthenosphere.
基金Project supported by the National Natural Science Foundation of China
文摘There were mighty advances in continental lithosphere study last decade. It is recognized that asthenosphere, which is marked by low-velocity seismic wave, is not only unlike that of ocean in continuity and uniformity, but also not suitable to continent as the concept of mechanical decoupling zone. The depth and reflection characters of the top of asthenosphere vary in different regions within a continent. Instead of the passive response to plate divergence, asthenosphere plays a very active role in continental dynamics,
基金supported by the CMG Program of the National Science Foundationthe Senior Visiting Professorship Program of the Chinese Academy of Sciences,the Helmholtz Association through the Research Alliance "Planetary Evolution and Life",and the European Commission through the Marie Curie Research Training Network c2c (No. MRTN-CT-2006-035957)
文摘Asthenosphere is a venerable concept based on geological intuition of Reginald Daly nearly 100 years ago. There have been various explanations for the existence of the asthenosphere. The concept of a plume-fed asthenosphere has been around for a few years due to the ideas put forth by Yamamoto et al.. Using a two-dimensional Cartesian code based on finite-volume method, we have investigated the influences of lower-mantle physical properties on the formation of a low-viscosity zone in the oceanic upper mantle in regions close to a large mantle upwelUng. The rheological law is Newtonian and depends on both temperature and depth. An extended-Boussinesq model is assumed for the energetics and the olivine to spinel, the spinel to perovskite and perovskite to post-perovskite (ppv) phase transitions are considered. We have compared the differences in the behavior of hot upweilings passing through the transition zone in the mid-mantle for a variety of models, starting with constant physical properties in the lower-mantle and culminating with complex models which have the post-perovskite phase transition and depth-dependent coefficient of thermal expansion and thermal conductivity. We found that the formation of the asthenosphere in the upper mantle in the vicinity of large upwellings is facilitated in models where both depth-dependent thermal expansivity and conductivity are included. Models with constant thermal expansivity and thermal conductivity do not produce a hot low-viscosity zone, resembling the asthenosphere. We have also studied the influences of a cylindrical model and found similar results as the Cartesian model with the important difference that upper-mantle temperatures were much cooler than the Cartesian model by about 600 to 700 K. Our findings argue for the potentially important role played by lower-mantle material properties on the development of a plume-fed asthenosphere in the oceanic upper mantle.
文摘We statistically validate the 2011-2022 earthquake prediction records of Ada, the sixth finalist of the 2nd China AETA in 2021, who made 147 earthquake predictions (including 60% of magnitude 5.5 earthquakes) with a prediction accuracy higher than 70% and a confidence level of 95% over a 12-year period. Since the reliable earthquake precursor signals described by Ada and the characteristics of Alfvén waves match quite well, this paper proposes a hypothesis on how earthquakes are triggered based on the Alfvén (Q G) torsional wave model of Gillette et al. When the plume of the upper mantle column intrudes into the magma and lithosphere of the soft flow layer during the exchange of hot and cold molten material masses deep inside the Earth’s interior during ascent and descent, it is possible to form body and surface plasma sheets under certain conditions to form Alfven nonlinear isolated waves, and Alfven waves often perturb the geomagnetic field, releasing huge heat and kinetic energy thus triggering earthquakes. To explain the complex phenomenon of how Ada senses Alvfen waves and how to locate epicenters, we venture to speculate that special magnetosensory cells in a few human bodies can sense earthquake precursors and attempt to hypothesize an algorithm that analyzes how the human biological nervous system encodes and decodes earthquake precursors and explains how human magnetosensory cells can solve complex problems such as predicting earthquake magnitude and locating epicenters.
文摘The Tianshan Carboniferous post-collisional rift volcanic rocks occur in northwestern China as a large igneous province. Based on petrogeochemical data, the Tianshan Carboniferous post-collisional rift basic lavas can be classified into two major magma types: (1) the low-Ti/Y type situated in the eastern-central Tianshan area, which exhibits low Ti/Y (<500), Ce/Yb (<15) and SiO2 (43-55%), and relatively high Fe2O3T (6.4-11.5%); (2) the high-Ti/Y type situated in the western Tianshan area, which has high Ti/Y (>500), Ce/Yb (>11) and SiO2 (49-55%), and relatively low Fe2O3T (5.8-7.8%). Elemental data suggest that chemical variations of the low-Ti/Y and high-Ti/Y lavas cannot be explained by fractional crystallization from a common parental magma. The Tianshan Carboniferous basic lavas originated most likely from an OIB-like asthenospheric mantle source (87Sr/86Sr(t) ≈ 0.703-0.705, eNd(0 = +4 to +7). The crustal contamination and continental lithospheric mantle have also contributed significantly to the formation of the basic lavas of the Tianshan Carboniferous post-collisional rift. The silicic lavas were probably generated by partial melting of the crust. The data of this study show that spatial petrogeochemical variations exist in the Carboniferous post-collisional rift volcanics province in the Tianshan region. Occurrence of the thickest volcanics dominated by tholeiitic lavas may imply that the center of the mantle-melting anomaly (mantle plume) was in the eastern Tianshan area at that time. The basic volcanic magmas in the eastern Tianshan area were generated by a relatively high degree of partial melting of the mantle source around the spinel-garnet transition zone, whereas the alkaline basaltic lavas are of the dominant magma type in the western Tianshan area, which were generated by a low degree of partial melting of the mantle source within the stable garnet region, thus the basic lavas of the western Tianshan area might have resulted from relatively thick lithosphere and low geothermal gradient.
基金benefited from financial supports by Land and Resources Survey Project of China(Grant Nos.1212010611804, 121201120133)the National Natural Science Foundation of China(Grant No.40472044)
文摘The Carboniferous-Early Permian rift-related volcanic successions, covering large areas in the Chinese Tianshan and its adjacent areas, make up a newly recognized important Phanerozoic large igneous province in the world, which can be further divided into two sub-provinces: Tianshan and Tarim. The regional unconformity of Lower Carboniferous upon basement or pre-Carboniferous rocks, the ages (360--351 Ma) of the youngest ophiolite and the peak of subduction metamorphism of high pressure-low temperature metamorphic belt and the occurrence of Ni-Cu-bearing mafic-ultramafic intrusion with age of ~352 Ma and A-type granite with age of ~358 Ma reveal that the final closure of the Paleo-Asian Ocean might take place in the Early Mississippian. Our summation shows that at least four criteria, being normally used to identify ancient asthenosphere upwelling (or mantle plumes), are met for this large igneous province: (1) surface uplift prior to magmatism; (2) being associated with continental rifting and breakup events; (3) chemical characteristics of asthenosphere (or plume) derived basalts; (4) close links to large-scale mineralization and the uncontaminated basalts, being analogous to those of many "ore-bearing" large igneous provinces, display Sr-Nd isotopic variations between plume and EMI geochemical signatures, These suggest that a Carboniferous asthenosphere upwelling and an Early Permian plume played the central role in the generation of the Tianshan--Tarim (central Asia) large igneous province.
基金supported by grants from National Natural Science Foundation of China (Nos.40873016,41173034,90814003)supportedby a grant from China Geological Survey (No.1212011121088)
文摘The mantle xenoliths in the Quaternary ChangbaishanVolcano in southern Jilin Province contain spinel-facies lherzolites. The equilibration temperatures for these samples range from 902℃ to 1064℃ based on the two-pyroxene thermometer of Brey and Kohler (1990), and using the oxybarometry of Nell and Wood (1991), the oxidation state was estimated from FMQ-1.32 to -0.38 with an average value of FMQ-0.81 (n = 8), which is comparable to that of abyssal peridotites and the asthenospheric mantle. ThefO2 values of peridotites, together with their bulk rock compositions (e.g., Mg#, Al2O3, CaO, Ni, Co, Cr) and mineral compositions (e.g., Mg# of olivine and pyroxene, Cr# [=Cr/ [Cr+Al]] and Mg# [=Mg/[Mg+Fe2~] of spinel), suggest that the present-day subcontinental lithospheric mantle (SCLM) beneath the Changbaishan Volcano most likely formed from an upwelling asthenosphere at some time after the late Mesozoic and has undergone a low degree of partial melting. The studied lherzolite xenoliths show low concentrations of S, Cu, and platinum group elements (PGE), which plot a flat pattern on primitive-mantle normalized diagram. Very low concentrations in our samples suggest that PGEs occur as alloys or hosted by silicate and oxide minerals. The compositions of the studied samples are similar to those of peridotite xenoliths in the Longgang volcanic field (LVF) in their mineralogy and bulk rock compositions including the abundance of chalcophile and siderophile elements. However, they are distinctly different from those of peridotite xenoliths in other areas of the North China Craton (NCC) in terms of Cu, S and PGE. Our data suggest that the SCLM underlying the northeastern part of the NCC may represent a distinct unit of the newly formed lithospberic mantle.
文摘esozoic volcanic rocks developed on the basement of the Precambrian block and Hercynina orogenic belt surrounding Songliao basin. The volcanism was actived from Early Jurassic to Late Cretaceous with its peak time in J3-K1 and the rock types are dominated by high K calcalkaline series, partly consisting of shoshonitic and calcalkaline series. Mesozoic volcanism of studied area may result from decompression melting accompanying uneven extension wide spread at a large area corresponding to the formation of grabens without contemporaneous subduction in J3-K1. The basic volcanics and their differentiates came from an enriched lithospheric mantle. While in K2 the extensional center concentrated at Songliao basin and the equivalent products are basalts rich in Na and poor in K and the magma generated from the top of asthenosphere about 60 km. During this time large Songliao depression was developed.
文摘The rock series, rock types and Sr-Nd isotopic dating of the Cenozoicvolcanic rocks in the South China Sea are similar to those in its vicinity. On the basis of thespreading age of the South China Sea, the Cenozoic volcanic rocks are divided into three stages: thepre-spreading stage, the spreading stage and the post-spreading stage. The deep processcharacteristics of the asthenosphere and lithosphere may be inferred from the study on primarybasaltic magma. The top layers of the asthenosphere both in the spreading stage and in thepre-spreading stage are closer to the earth surface than that in the post-spreading stage. From thepre-spreading stage to the spreading stage, the top layer of the asthenosphere decreased in depth,while the amount of interstitial partial melts increased. The evolution of the primary basalticmagma shows a progressive evolution sequence of the rifting volcanism and a faster lithosphericspreading velocity. From the spreading stage to the post-spreading stage, the top layer of theasthenosphere gradually increased in depth, but the amount of interstitial partial melts decreased.The evolution of primary basaltic magma shows a retrogressive evolution sequence of the riftingvolcanism and a gradual decrease in the lithospheric spreading velocity. The depth recognized by thestudy on the Cenozoic volcanism demonstrates the deep environment for the formation and evolutionof the South China Sea.
文摘The lithospheric structure of China and its adjacent area is very complex and is marked by several prominent characteristics. Firstly, China's continental crust is thick in the west but thins to the east, and thick in the south but thins to the north. Secondly, the continental crust of the Qinghai--Tibet Plateau has an average thickness of 60-65 km with a maximum thickness of 80 km, whereas in eastern China the average thickness is 30-35 km, with a minimum thickness of only 5 km in the center of the South China Sea. The average thickness of continental crust in China is 47.6 km, which greatly exceeds the global average thickness of 39.2 km. Thirdly, as with the crust, the lithosphere of China and its adja- cent areas shows a general pattern of thicker in the west and south, and thinner in the east and north. The lithosphere of the Qinghai--Tibet Plateau and northwestern China has an average thickness of 165 kin, with a maximum thickness of 180--200 km in the central and eastern parts of the Tarim Basin, Pamir, and Changdu areas. In contrast, the vast areas to the east of the Da Hinggan Ling-Taihang-Wuling Mountains, including the marginal seas, are characterized by lithospheric thicknesses of only 50-85 kin. Fourthly, in western China the lithosphere and asthenosphere behave as a "layered structure", reflecting their dynamic background of plate collision and convergence. The lithosphere and asthenosphere in eastern China display a "block mosaic structure", where the lithosphere is thin and the asthenosphere is very thick, a pattern reflecting the consequences of crustal extension and an upsurge of asthenospheric materials. The latter is responsible for a huge low velocity anomaly at a depth of 85--250 km beneath East Asia and the western Pacific Ocean. Finally, in China there is an age structure of "older in the upper layers and younger in the lower layers" between both the upper and lower crusts and between the crust and the lithospheric mantle.
文摘Is the westerly rotation of the lithosphere an ephemeral accidental recent phenomenon or is it a stable process of Earth's geodynamics? The reason why the tidal drag has been questioned as the mechanism determining the lithospheric shift relative to the underlying mantle is the apparent too high viscosity of the asthenosphere. However, plate boundaries asymmetries are a robust indication of the 'westerly'decoupling of the entire Earth's outer lithospheric shell and new studies support lower viscosities in the low-velocity layer(LVZ) atop the asthenosphere. Since the solid Earth tide oscillation is longer in one side relative to the other due to the contemporaneous Moon's revolution, we demonstrate that a non-linear rheological behavior is expected in the lithosphere mantle interplay. This may provide a sort of ratchet favoring lowering of the LVZ viscosity under shear, allowing decoupling in the LVZ and triggering the westerly motion of the lithosphere relative to the mantle.
文摘The present paper describes the characteristics of Cenozoic basalt in the Bohaiwan basin and its implication of the control of deep process over the basin evolution. The large scale Eogene basalts lying on the basement of the Bohaiwan basin belong to alkaline series and subalkaline series. The basalt magma originates at a depth of 48-76 km and a temperature of 1 300-1 400 ℃ with the mantle partial melting degree of 8%-14%. In Eogene period, the rising of the top of asthenosphere from 100-140 km to 50-70 km led to the strong extension and thinning of the overlying lithosphere, which was stretched at an average rate of 0.41 cm/a and the β value from 1.9 to 2.3. At the same time, it triggered the great scale rifting in the earth crust, forming large rift basins.
文摘Tectonic uplift producing recent mountain systems has spanned in the Alpine-Himalayan Belt the time interval from Oligocene to Recent (the last 30 - 35 Ma), being divided into two stages. During the first stage, local uplands, usually not higher than middle-elevated mountains, rose and their total area increased. During the second stage (the last 5 - 2 Ma) this process was accompanied by a total uplift of the greater part of the belt. As a result, the rate of vertical movements increased, the recent mountain systems were formed, and the coarse molasses accumulated in the adjacent basins. Uplift of the land surface resulting in formation of mountain topography is an isostatic reaction to decompaction of the upper spheres of the Solid Earth. Three factors of the decompaction are discussed in the paper. These are: I, collisional compression, resulting in deformational thickening of the Earth’s crust (folding, thrusting, etc.);II, partial replacing of the lithosphere mantle by the lower-dense asthenosphere material and, as a result, decompaction of the uppermost mantle;and III, retrograde metamorphism of high-metamorphosed rocks within the lower crust and near the crust-mantle boundary and, as a result, decompaction of these rocks. These processes were initiated or facilitated by the lateral asthenosphere flows. According to the seismic tomography data, the flows spread from the stationary developed zone of the rise of deep mantle material that is expressed in the recent structure as the Ethiopian-Afar super-plume. Reworking the 400 - 700-km deep transition layer of the mantle, the sub-lithosphere flows could be enriched in sources of aqueous fluids. The flows and their fluids initiated factors II and III of the tectonic uplift and caused softening and detachment of the lithosphere, facilitating deformational thickening of the Earth’s crust, i.e., the factor I. The latter produced uplands during the entire Oligocene-Quaternary development of the orogenic belt, while the factors II and III manifested themselves only during the second stage of mountain building. The detailed studies in the Central Tien Shan and the Greater Caucasus showed that the acceleration of uplift at the second stage was caused mainly by the factor II in the Central Tien Shan and the factor III in the Greater Caucasus.
文摘Comprehensive geophysical survey carried out in Western Tibet discovered that there is a layer with low velocity and high electrical conductivity embedded in the depth of 10~25km with a thickness of n km beneath the southern Gandise terrain and the southern Qiangtang terrain respectively. A low velocity body, simultaneously a high electrical conductivity body, exists in the depth of 40km with a thickness of 11~22km, expanding about 100km in NS direction beneath Dongco basin in the northern Gandise.In order to investigate how these layers were formed, more study on deep thermal status is needed.There is neither heat flow values measured on the spot nor thermal parameters measured of the typical rock in Western Tibet. The relations between heat flow values and other geological and geophysical parameters are analyzed. A method to calculate heat flow values and temperature distribution with the depth using the depth of Moho and the depth of the asthenosphere is suggested. In the area where there are both heat flow values measured and the two depths mentioned above, the heat flow values calculated using this method are very similar to the heat flow values measured.
文摘The review paper summarizes the main results of the electromagnetic induction studies carried out in the Pannonian Basin and Carpathians during the last 30 years . The following conducting formations are discussed in detail : (1)Crustal conductors in the crystalline basement of the sedimentary basin mainly due to graphitic schist blocks clearly connected to the fracture tectonics of the area ; (2 ) Conducting layer in the lower crust probably due to free fluid deliberated by the dehydration process at temperature of 300-400℃during metamorphism ; (3 ) Conducting asthenosphere due to partial melting at the bottom of the lithosphere ; and (4) Conductivity increases due to olivine-spinel phase transition .All of these phenomena are strongly related to the special thermal state and tectonics of the Pannonian Basin and Carpathians.