The late Permian(Lopingian)was a crucial climate transition period from the late Paleozoic Ice Age to the early Triassic of exceptionally high temperatures.However,the origins of the third-order sea-level changes duri...The late Permian(Lopingian)was a crucial climate transition period from the late Paleozoic Ice Age to the early Triassic of exceptionally high temperatures.However,the origins of the third-order sea-level changes during the Lopingian Epoch remain unclear.Here,we presented astronomically calibrated gamma-ray(GR)log and non-U GR(computed gamma ray or CGR)curves from the clastic and carbonate successions of well GFD-1 in the Pingle Depression of South China for studying the sea-level oscillations during the Lopingian.Spectral analyses of the 405 kyr-calibrated GR and CGR time data revealed periodicities close to about 405,about 100,about 44.2,about 35.1,about 21,and about 17.5 kyr,supporting the existence of Milankovitch forcing in the sedimentary records.A high-resolution astronomical time scale and high-resolution sedimentation rate curve of the Lopingian from well GFD-1 were constructed by cyclostratigraphic analysis.The eccentricity and obliquity amplitude modulation cycles suggested long periodicities of about 2.4 and about 1.2 myr,respectively.In the Wuchiapingian greenhouse of the Lopingian,the about 2.4 myr eccentricity oscillation controlled‘weak’glacio-eustasy and/or aquifer eustatic changes related to the global third-order sea-level changes and that a lowstand(W2)was initiated by an eccentricity oscillation minimum.In contrast,during the Changhsingian,which exhibited a cooling event,an about 1.2 myr obliquity cycle was probably strong,with the sea-level records highlighting the link between the‘icehouse’sea-level lowering(C2 and C1)and the obliquity nodes.Moreover,dynamic sedimentary noise model as an indicator of sea-level showed local third-order sea-level variations,the coevolution trends in the orbital power,global and local sea-level changes,and sedimentation rate had significant implications for establishing the global nature and synchronicity of these million-year-scale eustatic records and reconstructing the temporal depositional history at a regional scale.In addition,the volcanism and tectonism that continued into the early-middle Wuchiapingian probably led to a series of climate changes that drove the hydrological cycles not paced by the Milankovitch cycles.展开更多
Fine-grained lacustrine sedimentation controlled by astronomical cycles remains a research weakness in sedimentology studies,as most studies have concentrated on how astronomical cycles affect the normal lacustrine fi...Fine-grained lacustrine sedimentation controlled by astronomical cycles remains a research weakness in sedimentology studies,as most studies have concentrated on how astronomical cycles affect the normal lacustrine fine-grained sedimentation,but how they affect the lacustrine fine-grained event sedimen-tation has been rarely studied.Therefore,this work researched the characteristics of event sedimentation by systematically observing the cores from 30 cored wells in the Shahejie Formation of the Dongying Sag at a depth of over 1800 m,with more than 4000 thin sections being authenticated and over 1000 whole rocks being analyzed by X-ray diffraction(XRD).The research object was the Chunshang Sub-member of Upper Es_(4) in the Fanye 1 well,as it had the most comprehensive analysis data and underwent the most continuous coring.We divided astronomical cycles into different orders and made corresponding curves using the gamma-ray(GR)curve,spectral analysis,power spectrum estimation,and module extreme values,there were 6 long eccentricity periods,22 short eccentricity periods,65.5 obliquity cycles,and 110.5 precession cycles in this sub-member.On this basis,this study analyzed the control of astronomical cycles on the lacustrine fine-grained event sedimentation,and the research shows deposits were developed by slide-slump,turbidities,hyperpycnites,and tempestites in the Chunshang Sub-member of the Upper Es_(4),with higher long eccentricity,the monsoon climate contributes to the formation of storm currents,while with lower long eccentricity,the surface deposits are severely eroded by rivers and rainfalls,thus developing the slide-slump,turbidities,and hyperpycnites.The relationship between the lacustrine fine-grained event sedimentation and astronomical cycles was studied in this case study,which can promote research on fine-grained sedimentary rocks in genetic dynamics and boost the theoretical and disciplinary development in fine-grained sedimentology.展开更多
The development of the Paleogene coal seams in China's offshore basin areas generally had the characteristics of coal measures with large thicknesses,large numbers of coal seams,thin single coal seams,poor stabili...The development of the Paleogene coal seams in China's offshore basin areas generally had the characteristics of coal measures with large thicknesses,large numbers of coal seams,thin single coal seams,poor stability,scattered vertical distribution,and a wide distribution range.This study selected the Enping Formation of the ZhuⅠDepression in the northern section of the South China Sea as an example to determine the macro-control factors of the development of the Paleogene coal seam groups.An analysis was carried out on the influencing effects and patterns of the astronomical cycles related to the development of the thin coal seam groups in the region.A floating astronomical time scale of the Enping Formation was established,and the sedimentary time limit of the Enping Formation was determined to be approximately 6.15 Ma±.In addition,the cyclostratigraphy analysis results of the natural gamma-ray data of Well XJ in the Enping Formation of the Xijiang Sag revealed that the development of the thin coal seams had probably been affected by short eccentricity and precession factors.The formation process of coal seams was determined to have been affected by high seasonal contrast,precipitation,and insolation.During the periods with high values of short eccentricity,the seasonal contrasts tended to be high.During those periods,fluctuations in the precession controls resulted in periodic volume changes in precipitation and insolation of the region,resulting in the development of thin coal seams.It was also found that the periods with low precession were the most conducive to coal seam development.On that basis,combined with such factors as sedimentary environmental conditions conducive to the development of thin coal seam groups,this study established a theoretical model of the comprehensive influences of short eccentricity and precession on the development and distribution of Paleogene thin coal seam groups in offshore lacustrine basins.The patterns of the Paleogene astronomical periods and paleoclimate evolution,along with the control factors which impacted the development of thin coal seam groups in offshore lacustrine basins,were revealed.展开更多
This paper analyzes the heavy rainstorm in northeast Dongting Lake on June 4, 2014. Results indicate the weather situation, radar echo and the satellite imagery of the strong precipitation. Besides, the warm and wet w...This paper analyzes the heavy rainstorm in northeast Dongting Lake on June 4, 2014. Results indicate the weather situation, radar echo and the satellite imagery of the strong precipitation. Besides, the warm and wet water vapor in Dongting Lake also contributes to this heavy rainstorm. As the astronomical precipitation cycle in this precipitation is outstanding, it is essential to pay attention to and use the astronomical precipitation forecast method.展开更多
The sources,transportation and depositional processes of lacustrine mudrock are still poorly understood.Existing studies have demonstrated the controlling effect of astronomical forcing on lacustrine mudrock depositio...The sources,transportation and depositional processes of lacustrine mudrock are still poorly understood.Existing studies have demonstrated the controlling effect of astronomical forcing on lacustrine mudrock deposition,but its depositional mechanism and evolution are still not systematically investigated.Most research related to astronomical forcing exclusively highlights the sedimentation of carbonate rocks in deep-water lacustrine setting,with insufficient attention paid to the thick organic-rich,deep-lake mudrock.With the increasing interest in exploration and development of shale oil and gas accumulations,it is urgent to deeply understand depositional rules of lacustrine mudrock.This study reviews sediment sources,depositional mechanism and evolution process of mudrock through expounding the correlations between the periodic changes of astronomical forces,the parameters of Earth orbital and mudrock compositions.By investigating the existing literature and using some actual data of Jiyang Depression,Bohai Bay Basin in East China,this study expounds on the influence of astronomical cycles on the deposition of lacustrine mudrock.Moreover,efforts are made to analyze the effects of various orbital parameters(e.g.,precession,obliquity,and eccentricity with the periods ranging from tens of thousands years to million years)on the deposition of mudrock from small-scale(decimeters to meters)to large-scale(10s to 100s meters).Further,it is feasible to apply the high-precision isochronous stratigraphic correlation into clarifying the distribution of favorable shale oil and gas reservoirs.To conclude,this study enunciates the sedimentation of mudrock from a new perspective(astronomical forcing)and provides a direction for the research on sedimentation of fine-grained sedimentary rocks.展开更多
基金This work was supported by a National Natural Science Foundation of China(Grant No.91958210)the Government Finance Level II Project(No.DD20190083)‘the 13th Five-Year Plan’National Science and Technology Major Project(No.2016ZX05034001-003).
文摘The late Permian(Lopingian)was a crucial climate transition period from the late Paleozoic Ice Age to the early Triassic of exceptionally high temperatures.However,the origins of the third-order sea-level changes during the Lopingian Epoch remain unclear.Here,we presented astronomically calibrated gamma-ray(GR)log and non-U GR(computed gamma ray or CGR)curves from the clastic and carbonate successions of well GFD-1 in the Pingle Depression of South China for studying the sea-level oscillations during the Lopingian.Spectral analyses of the 405 kyr-calibrated GR and CGR time data revealed periodicities close to about 405,about 100,about 44.2,about 35.1,about 21,and about 17.5 kyr,supporting the existence of Milankovitch forcing in the sedimentary records.A high-resolution astronomical time scale and high-resolution sedimentation rate curve of the Lopingian from well GFD-1 were constructed by cyclostratigraphic analysis.The eccentricity and obliquity amplitude modulation cycles suggested long periodicities of about 2.4 and about 1.2 myr,respectively.In the Wuchiapingian greenhouse of the Lopingian,the about 2.4 myr eccentricity oscillation controlled‘weak’glacio-eustasy and/or aquifer eustatic changes related to the global third-order sea-level changes and that a lowstand(W2)was initiated by an eccentricity oscillation minimum.In contrast,during the Changhsingian,which exhibited a cooling event,an about 1.2 myr obliquity cycle was probably strong,with the sea-level records highlighting the link between the‘icehouse’sea-level lowering(C2 and C1)and the obliquity nodes.Moreover,dynamic sedimentary noise model as an indicator of sea-level showed local third-order sea-level variations,the coevolution trends in the orbital power,global and local sea-level changes,and sedimentation rate had significant implications for establishing the global nature and synchronicity of these million-year-scale eustatic records and reconstructing the temporal depositional history at a regional scale.In addition,the volcanism and tectonism that continued into the early-middle Wuchiapingian probably led to a series of climate changes that drove the hydrological cycles not paced by the Milankovitch cycles.
基金supported by the Study on Astronomical Stratigraphic Period of Lacustrine Shale and High Resolution Sedimentary Cycle in Logging(41872166)of the National Natural Science Foundation of China and the Exploration and Development Research Institute,Shengli Oilfield Company,SINOPEC.
文摘Fine-grained lacustrine sedimentation controlled by astronomical cycles remains a research weakness in sedimentology studies,as most studies have concentrated on how astronomical cycles affect the normal lacustrine fine-grained sedimentation,but how they affect the lacustrine fine-grained event sedimen-tation has been rarely studied.Therefore,this work researched the characteristics of event sedimentation by systematically observing the cores from 30 cored wells in the Shahejie Formation of the Dongying Sag at a depth of over 1800 m,with more than 4000 thin sections being authenticated and over 1000 whole rocks being analyzed by X-ray diffraction(XRD).The research object was the Chunshang Sub-member of Upper Es_(4) in the Fanye 1 well,as it had the most comprehensive analysis data and underwent the most continuous coring.We divided astronomical cycles into different orders and made corresponding curves using the gamma-ray(GR)curve,spectral analysis,power spectrum estimation,and module extreme values,there were 6 long eccentricity periods,22 short eccentricity periods,65.5 obliquity cycles,and 110.5 precession cycles in this sub-member.On this basis,this study analyzed the control of astronomical cycles on the lacustrine fine-grained event sedimentation,and the research shows deposits were developed by slide-slump,turbidities,hyperpycnites,and tempestites in the Chunshang Sub-member of the Upper Es_(4),with higher long eccentricity,the monsoon climate contributes to the formation of storm currents,while with lower long eccentricity,the surface deposits are severely eroded by rivers and rainfalls,thus developing the slide-slump,turbidities,and hyperpycnites.The relationship between the lacustrine fine-grained event sedimentation and astronomical cycles was studied in this case study,which can promote research on fine-grained sedimentary rocks in genetic dynamics and boost the theoretical and disciplinary development in fine-grained sedimentology.
基金The Scientific Research Project under contract No.CCL2021RCPS172KQNthe Formation Mechanism and Distribution Prediction of Cenozoic Marine Source rocks in Qiongdongnan and Pearl River Mouth Basin under contract No.2021-KT-YXKY01+3 种基金the Resource Potential,Accumulation Mechanism and Breakthrough Direction of Potential Oil-rich Sags in Offshore Basins of China under contract No.2021-KT-YXKY-03the National Natural Science Foundation of China(NSFC)under contract No.42372132the Open Foundation of Hebei Provincial Key Laboratory of Resource Survey and Researchthe National Natural Science Foundation of China(NSFC)under contract Nos 42072188,42272205。
文摘The development of the Paleogene coal seams in China's offshore basin areas generally had the characteristics of coal measures with large thicknesses,large numbers of coal seams,thin single coal seams,poor stability,scattered vertical distribution,and a wide distribution range.This study selected the Enping Formation of the ZhuⅠDepression in the northern section of the South China Sea as an example to determine the macro-control factors of the development of the Paleogene coal seam groups.An analysis was carried out on the influencing effects and patterns of the astronomical cycles related to the development of the thin coal seam groups in the region.A floating astronomical time scale of the Enping Formation was established,and the sedimentary time limit of the Enping Formation was determined to be approximately 6.15 Ma±.In addition,the cyclostratigraphy analysis results of the natural gamma-ray data of Well XJ in the Enping Formation of the Xijiang Sag revealed that the development of the thin coal seams had probably been affected by short eccentricity and precession factors.The formation process of coal seams was determined to have been affected by high seasonal contrast,precipitation,and insolation.During the periods with high values of short eccentricity,the seasonal contrasts tended to be high.During those periods,fluctuations in the precession controls resulted in periodic volume changes in precipitation and insolation of the region,resulting in the development of thin coal seams.It was also found that the periods with low precession were the most conducive to coal seam development.On that basis,combined with such factors as sedimentary environmental conditions conducive to the development of thin coal seam groups,this study established a theoretical model of the comprehensive influences of short eccentricity and precession on the development and distribution of Paleogene thin coal seam groups in offshore lacustrine basins.The patterns of the Paleogene astronomical periods and paleoclimate evolution,along with the control factors which impacted the development of thin coal seam groups in offshore lacustrine basins,were revealed.
基金Supported by the"Short,Cheap,Fast"Subject of Hunan Meteorological Bureau in 2011(No.023)~~
文摘This paper analyzes the heavy rainstorm in northeast Dongting Lake on June 4, 2014. Results indicate the weather situation, radar echo and the satellite imagery of the strong precipitation. Besides, the warm and wet water vapor in Dongting Lake also contributes to this heavy rainstorm. As the astronomical precipitation cycle in this precipitation is outstanding, it is essential to pay attention to and use the astronomical precipitation forecast method.
基金co-funded by the China National Key Research Project(Grant No.2017ZX05009-002)the National Natural Science Foundation of China(Grant Nos.41772090,41802130)the Foundation from Shandong Key Laboratory of Depositional Mineralization and Sedimentary Mineral,Shandong University of Science and Technology(Grant No.DMSM20190024)。
文摘The sources,transportation and depositional processes of lacustrine mudrock are still poorly understood.Existing studies have demonstrated the controlling effect of astronomical forcing on lacustrine mudrock deposition,but its depositional mechanism and evolution are still not systematically investigated.Most research related to astronomical forcing exclusively highlights the sedimentation of carbonate rocks in deep-water lacustrine setting,with insufficient attention paid to the thick organic-rich,deep-lake mudrock.With the increasing interest in exploration and development of shale oil and gas accumulations,it is urgent to deeply understand depositional rules of lacustrine mudrock.This study reviews sediment sources,depositional mechanism and evolution process of mudrock through expounding the correlations between the periodic changes of astronomical forces,the parameters of Earth orbital and mudrock compositions.By investigating the existing literature and using some actual data of Jiyang Depression,Bohai Bay Basin in East China,this study expounds on the influence of astronomical cycles on the deposition of lacustrine mudrock.Moreover,efforts are made to analyze the effects of various orbital parameters(e.g.,precession,obliquity,and eccentricity with the periods ranging from tens of thousands years to million years)on the deposition of mudrock from small-scale(decimeters to meters)to large-scale(10s to 100s meters).Further,it is feasible to apply the high-precision isochronous stratigraphic correlation into clarifying the distribution of favorable shale oil and gas reservoirs.To conclude,this study enunciates the sedimentation of mudrock from a new perspective(astronomical forcing)and provides a direction for the research on sedimentation of fine-grained sedimentary rocks.