While the interaction between information and disease in static networks has been extensively investigated,many studies have ignored the characteristics of network evolution.In this study,we construct a new two-layer ...While the interaction between information and disease in static networks has been extensively investigated,many studies have ignored the characteristics of network evolution.In this study,we construct a new two-layer coupling model to explore the interactions between information and disease.The upper layer describes the diffusion of disease-related information,and the lower layer represents the disease transmission.We then use power-law distributions to examine the influence of asymmetric activity levels on dynamic propagation,revealing a mapping relationship characterizing the interconnected propagation of information and diseases among partial nodes within the network.Subsequently,we derive the disease outbreak threshold by using the microscopic Markov-chain approach(MMCA).Finally,we perform extensive Monte Carlo(MC)numerical simulations to verify the accuracy of our theoretical results.Our findings indicate that the activity levels of individuals in the disease transmission layer have a more significant influence on disease transmission compared with the individual activity levels in the information diffusion layer.Moreover,reducing the damping factor can delay disease outbreaks and suppress disease transmission,while improving individual quarantine measures can contribute positively to disease control.This study provides valuable insights into policymakers for developing outbreak prevention and control strategies.展开更多
Recently, binary metal oxides have been considerably researched for energy storage since it can provide higher electrical conductivity and electrochemical activity than single components. Besides, rational arrays stru...Recently, binary metal oxides have been considerably researched for energy storage since it can provide higher electrical conductivity and electrochemical activity than single components. Besides, rational arrays structure design can effectively enhance the utilization of active material. In this article, we synthesis a porous NiCo_2O_4 nanowires arrays, which were intimate contact with flexible carbon cloth(CC)by a facile hydrothermal reaction and calcination treatment. The rational array structures of NiCo_2O_4 facilitate the diffusion of electrolyte and effectively increase the utilization of active material. The asobtained NiCo_2O_4@CC electrode exhibits a high capacitance of 1183 mF cm^(-2) and an outstanding capacitance retention of 90.4% after 3000 cycles. Furthermore, a flexible asymmetric supercapacitor(ASC)using NiCo_2O_4@CC as positive electrode and activated carbon cloth(ACC) as negative electrode was fabricated, which delivers a large capacitance of 750 mF cm^(-2)(12.5 F cm^(-3)), a high energy density of 0.24 mWh cm^(-2)(3.91 mWh cm^(-3)), as well as excellent cycle stability under different bending states.These remarkable results suggest that as-assembled NiCo_2O_4@CC//ACC ASC is a promising candidate in flexible energy storage applications.展开更多
Just like an electronic diode that allows the electrical current to flow in one direction only, a kind of chiral metamaterial structure with a similar functionality for the electromagnetic wave is proposed. The design...Just like an electronic diode that allows the electrical current to flow in one direction only, a kind of chiral metamaterial structure with a similar functionality for the electromagnetic wave is proposed. The designed nanostructure that consists of twisted metallic split-ring resonators on both sides of a dielectric substrate achieves asymmetric transmission for a forward and backward propagating linearly polarized wave by numerical simulation in near-infrared band. Difference in transmission efficiency of the optimized structure between the same polarized waves incident from opposite directions can reach a maximum at the communication wavelength (1.55 μm). Moreover, the simulation results of this structure also exhibit strong optical activity and circular dichroism.展开更多
Disease is a serious threat to human society.Understanding the characteristics of disease transmission is helpful for people to effectively control disease.In real life,it is natural to take various measures when peop...Disease is a serious threat to human society.Understanding the characteristics of disease transmission is helpful for people to effectively control disease.In real life,it is natural to take various measures when people are aware of disease.In this paper,a novel coupled model considering asymmetric activity is proposed to describe the interactions between information diffusion and disease transmission in multiplex networks.Then,the critical threshold for disease transmission is derived by using the micro-Markov chain method.Finally,the theoretical results are verified by numerical simulations.The results show that reducing the activity level of individuals in the physical contact layer will have a continuous impact on reducing the disease outbreak threshold and suppressing the disease.In addition,the activity level of individuals in the virtual network has little impact on the transmission of the disease.Meanwhile,when individuals are aware of more disease-related information,the higher their awareness of prevention will be,which can effectively inhibit the transmission of disease.Our research results can provide a useful reference for the control of disease transmission.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 72174121 and 71774111)the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learningthe Project for the Natural Science Foundation of Shanghai, China (Grant No. 21ZR1444100)
文摘While the interaction between information and disease in static networks has been extensively investigated,many studies have ignored the characteristics of network evolution.In this study,we construct a new two-layer coupling model to explore the interactions between information and disease.The upper layer describes the diffusion of disease-related information,and the lower layer represents the disease transmission.We then use power-law distributions to examine the influence of asymmetric activity levels on dynamic propagation,revealing a mapping relationship characterizing the interconnected propagation of information and diseases among partial nodes within the network.Subsequently,we derive the disease outbreak threshold by using the microscopic Markov-chain approach(MMCA).Finally,we perform extensive Monte Carlo(MC)numerical simulations to verify the accuracy of our theoretical results.Our findings indicate that the activity levels of individuals in the disease transmission layer have a more significant influence on disease transmission compared with the individual activity levels in the information diffusion layer.Moreover,reducing the damping factor can delay disease outbreaks and suppress disease transmission,while improving individual quarantine measures can contribute positively to disease control.This study provides valuable insights into policymakers for developing outbreak prevention and control strategies.
基金supported by the National Natural Science Foundation of China(Grant nos.51402324,51402325,51302281)
文摘Recently, binary metal oxides have been considerably researched for energy storage since it can provide higher electrical conductivity and electrochemical activity than single components. Besides, rational arrays structure design can effectively enhance the utilization of active material. In this article, we synthesis a porous NiCo_2O_4 nanowires arrays, which were intimate contact with flexible carbon cloth(CC)by a facile hydrothermal reaction and calcination treatment. The rational array structures of NiCo_2O_4 facilitate the diffusion of electrolyte and effectively increase the utilization of active material. The asobtained NiCo_2O_4@CC electrode exhibits a high capacitance of 1183 mF cm^(-2) and an outstanding capacitance retention of 90.4% after 3000 cycles. Furthermore, a flexible asymmetric supercapacitor(ASC)using NiCo_2O_4@CC as positive electrode and activated carbon cloth(ACC) as negative electrode was fabricated, which delivers a large capacitance of 750 mF cm^(-2)(12.5 F cm^(-3)), a high energy density of 0.24 mWh cm^(-2)(3.91 mWh cm^(-3)), as well as excellent cycle stability under different bending states.These remarkable results suggest that as-assembled NiCo_2O_4@CC//ACC ASC is a promising candidate in flexible energy storage applications.
基金Project supported by the National Natural Science Foundation of China(Grant No.61078060)the Fund from the Ningbo Optoelectronic Materials and Devices Creative Team,China(Grant No.2009B21007)partially sponsored by K.C.Wong Magna Fund in Ningbo University
文摘Just like an electronic diode that allows the electrical current to flow in one direction only, a kind of chiral metamaterial structure with a similar functionality for the electromagnetic wave is proposed. The designed nanostructure that consists of twisted metallic split-ring resonators on both sides of a dielectric substrate achieves asymmetric transmission for a forward and backward propagating linearly polarized wave by numerical simulation in near-infrared band. Difference in transmission efficiency of the optimized structure between the same polarized waves incident from opposite directions can reach a maximum at the communication wavelength (1.55 μm). Moreover, the simulation results of this structure also exhibit strong optical activity and circular dichroism.
基金partially supported by the Project for the National Natural Science Foundation of China(72174121,71774111)the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning+2 种基金the Project for the Natural Science Foundation of Shanghai(21ZR1444100)Project soft science research of Shanghai(22692112600)National Social Science Foundation of China(21BGL217,22BGL240)。
文摘Disease is a serious threat to human society.Understanding the characteristics of disease transmission is helpful for people to effectively control disease.In real life,it is natural to take various measures when people are aware of disease.In this paper,a novel coupled model considering asymmetric activity is proposed to describe the interactions between information diffusion and disease transmission in multiplex networks.Then,the critical threshold for disease transmission is derived by using the micro-Markov chain method.Finally,the theoretical results are verified by numerical simulations.The results show that reducing the activity level of individuals in the physical contact layer will have a continuous impact on reducing the disease outbreak threshold and suppressing the disease.In addition,the activity level of individuals in the virtual network has little impact on the transmission of the disease.Meanwhile,when individuals are aware of more disease-related information,the higher their awareness of prevention will be,which can effectively inhibit the transmission of disease.Our research results can provide a useful reference for the control of disease transmission.