期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Self‐supervised monocular depth estimation via asymmetric convolution block
1
作者 Lingling Hu Hao Zhang +2 位作者 Zhuping Wang Chao Huang Changzhu Zhang 《IET Cyber-Systems and Robotics》 EI 2022年第2期131-138,共8页
Without the dependence of depth ground truth,self‐supervised learning is a promising alternative to train monocular depth estimation.It builds its own supervision signal with the help of other tools,such as view synt... Without the dependence of depth ground truth,self‐supervised learning is a promising alternative to train monocular depth estimation.It builds its own supervision signal with the help of other tools,such as view synthesis and pose networks.However,more training parameters and time consumption may be involved.This paper proposes a monocular depth prediction framework that can jointly learn the depth value and pose transformation between images in an end‐to‐end manner.The depth network creatively employs an asymmetric convolution block instead of every square kernel layer to strengthen the learning ability of extracting image features when training.During infer-ence time,the asymmetric kernels are fused and converted to the original network to predict more accurate image depth,thus bringing no extra computations anymore.The network is trained and tested on the KITTI monocular dataset.The evaluated results demonstrate that the depth model outperforms some State of the Arts(SOTA)ap-proaches and can reduce the inference time of depth prediction.Additionally,the pro-posed model performs great adaptability on the Make3D dataset. 展开更多
关键词 asymmetric convolution block(ACB) KITTI dataset self‐supervised depth estimation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部