Asymmetric catalytic hydrogenations of imines and enamines with chiral transition-metal complexes bearing chiral ligands are among the most green and powerful approaches for the elaboration of chiral amine structures ...Asymmetric catalytic hydrogenations of imines and enamines with chiral transition-metal complexes bearing chiral ligands are among the most green and powerful approaches for the elaboration of chiral amine structures in organic synthesis.This review focuses on recent applications of asymmetric hydrogenations of imine and enamine substrates in the total syntheses of natural products.These applications include diverse processes involving asymmetric transfer hydrogenation(ATH)and asymmetric hydrogenation(AH)to form key chiral amine motifs in natural products with good efficiency and high-level enantiocontrol.展开更多
New ligand 1,2-bis{di[(R,R)-1,3,2-oxzaphosphlidine]phosphino}ethane [(R,R)-BDOPPEs 1,2,3 and 4] with C2-symmetric axis and bearing nitrogen and oxygen were synthesized from readily available optically active amino...New ligand 1,2-bis{di[(R,R)-1,3,2-oxzaphosphlidine]phosphino}ethane [(R,R)-BDOPPEs 1,2,3 and 4] with C2-symmetric axis and bearing nitrogen and oxygen were synthesized from readily available optically active amino alcohols.Rh complexes with these ligands were highly enantioselective catalysts for asymmetric hydrogenation of N-benzoyldehydroamino acid derivatives and α-functionalized ketones in 99%e.e.and 98%e.e.,respectively.This new class of(R,R)-BDOPPEs 1,2,3 and 4 gave much more effectivity and enantionselectivity than their corresponding non-C2-asymmetric aminophosphine phosphinite.展开更多
A new chiral ligand N p toluenesulfonyl 2,2′ dimethoxy 6,6′ diaminobiphenyl (Ts DMBDPPA) was prepared from 2,2′ dimethoxy 6,6′ diaminobiphenyl via N tosylation. Its Ru(II) complex was effec...A new chiral ligand N p toluenesulfonyl 2,2′ dimethoxy 6,6′ diaminobiphenyl (Ts DMBDPPA) was prepared from 2,2′ dimethoxy 6,6′ diaminobiphenyl via N tosylation. Its Ru(II) complex was effective catalysts for catalytic asymmetric transfer hydrogenation of aromatic ketones (with ee 's up to 69.3%).展开更多
基金This work was supported by the Fundamental Research Funds for the Central Universities(YJ201805,YJ201864).
文摘Asymmetric catalytic hydrogenations of imines and enamines with chiral transition-metal complexes bearing chiral ligands are among the most green and powerful approaches for the elaboration of chiral amine structures in organic synthesis.This review focuses on recent applications of asymmetric hydrogenations of imine and enamine substrates in the total syntheses of natural products.These applications include diverse processes involving asymmetric transfer hydrogenation(ATH)and asymmetric hydrogenation(AH)to form key chiral amine motifs in natural products with good efficiency and high-level enantiocontrol.
基金Supported by the National Basic Research Program of China(No.2003CB716000).
文摘New ligand 1,2-bis{di[(R,R)-1,3,2-oxzaphosphlidine]phosphino}ethane [(R,R)-BDOPPEs 1,2,3 and 4] with C2-symmetric axis and bearing nitrogen and oxygen were synthesized from readily available optically active amino alcohols.Rh complexes with these ligands were highly enantioselective catalysts for asymmetric hydrogenation of N-benzoyldehydroamino acid derivatives and α-functionalized ketones in 99%e.e.and 98%e.e.,respectively.This new class of(R,R)-BDOPPEs 1,2,3 and 4 gave much more effectivity and enantionselectivity than their corresponding non-C2-asymmetric aminophosphine phosphinite.
文摘A new chiral ligand N p toluenesulfonyl 2,2′ dimethoxy 6,6′ diaminobiphenyl (Ts DMBDPPA) was prepared from 2,2′ dimethoxy 6,6′ diaminobiphenyl via N tosylation. Its Ru(II) complex was effective catalysts for catalytic asymmetric transfer hydrogenation of aromatic ketones (with ee 's up to 69.3%).