Good linearity and wide dynamic range are the advantages of asymmetric Fabry-Pérot (F-P) interferometric cavity, whose realization has been long for. Based on optical thin film characteristic matrix theory, an ...Good linearity and wide dynamic range are the advantages of asymmetric Fabry-Pérot (F-P) interferometric cavity, whose realization has been long for. Based on optical thin film characteristic matrix theory, an asymmetric F-P interferometric cavity with good linearity and wide dynamic range is designed. And by choosing the material of two different thin metallic layers, the asymmetric F-P interferometric cavity is successfully fabricated. The design theory and method of this asymmetric F-P interferometric cavity have been described in detailed. In this paper an asymmetric F-P interferometric cavity used in fiber optical sensor is reported.展开更多
基金This work was supported by the National "863" Project of China (No. 2003AA311022)the National "973" Project of China (No. 2004CB719804)the National Natural Science Foundation of China (No. 10274108)the Natural Science Foundation of Guangdong Province of China.
文摘Good linearity and wide dynamic range are the advantages of asymmetric Fabry-Pérot (F-P) interferometric cavity, whose realization has been long for. Based on optical thin film characteristic matrix theory, an asymmetric F-P interferometric cavity with good linearity and wide dynamic range is designed. And by choosing the material of two different thin metallic layers, the asymmetric F-P interferometric cavity is successfully fabricated. The design theory and method of this asymmetric F-P interferometric cavity have been described in detailed. In this paper an asymmetric F-P interferometric cavity used in fiber optical sensor is reported.