期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Conjugate Vectors Method Applied to Asymmetrical Fault Analysis of Power Electronized Power Systems
1
作者 Yingbiao Li Xing Liu +2 位作者 Jiabing Hu Jianhang Zhu Jianbo Guo 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2024年第4期1536-1549,共14页
With the wide application of power electronized resources(PERs),the amplitude and frequency of voltages show significant time-varying characteristics under asymmetrical faults.As a result,the traditional phasor model,... With the wide application of power electronized resources(PERs),the amplitude and frequency of voltages show significant time-varying characteristics under asymmetrical faults.As a result,the traditional phasor model,impedance model,and symmetrical components method based on the constant amplitude and frequency of voltages are facing great challenges.Hence,a novel asymmetrical fault analysis method based on conjugate vectors is proposed in this paper which can meet the modeling and analysis requirements of the network excited by voltages with time-varying amplitude/frequency.Furthermore,asymmetrical fault characteristics are extracted.As an application,a faulted phase identification(FPI)strategy is proposed based on the fault characteristics.The correctness and superiority of the asymmetrical fault analysis method and FPI strategy are verified in time-domain simulations and a real-time digital simulator. 展开更多
关键词 asymmetrical fault characteristics conjugate vectors method dynamic asymmetrical fault analysis time-varying amplitude/frequency
原文传递
Asymmetrical Fault Current Calculation Method and Influencing Factors Analysis of Droop-Controlled Inverters 被引量:1
2
作者 Huimin Zhao Zhikang Shuai +3 位作者 Jun Ge An Luo Weimin Wu Z.John Shen 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2024年第2期562-573,共12页
Since the fault dynamic of droop-controlled inverter is different from synchronous generators (SGs), protection devices may become invalid, and the fault overcurrent may damage power electronic devices and threaten th... Since the fault dynamic of droop-controlled inverter is different from synchronous generators (SGs), protection devices may become invalid, and the fault overcurrent may damage power electronic devices and threaten the safety of the microgrid. Therefore, it is imperative to conduct a comprehensive fault analysis of the inverter to guide the design of protection schemes. However, due to the complexity of droop control strategy, existing literatures have simplified asymmetric fault analysis of droop-controlled inverters to varying degrees. Therefore, accurate fault analysis of a droop-controlled inverter is needed. In this paper, by analyzing the control system, an accurate fault model is established. Based on this, a calculation method for instantaneous asymmetrical fault current is proposed. In addition, the current components and current characteristics are analyzed. It was determined that fault currents are affected by control loops, fault types, fault distance and nonlinear limiters. In particular, the influences of limiters on the fault model, fault current calculation and fault current characteristics were analyzed. Through detailed analysis, it was found that dynamics of the control loop cannot be ignored, the fault type and fault distance determine fault current level, and part of the limiters will totally change the fault current trend. Finally, calculation and experimental results verify the correctness of the proposed method. 展开更多
关键词 asymmetrical fault analysis droop control fault current calculation method LIMITER transient fault characteristics
原文传递
Coordinated Rotor-Side Control Strategy for Doubly-FedWind Turbine under Symmetrical and Asymmetrical Grid Faults
3
作者 Quanchun Yan Chao Yuan +2 位作者 WenGu Yanan Liu Yiming Tang 《Energy Engineering》 EI 2023年第1期49-68,共20页
In order to solve the problems of rotor overvoltage,overcurrent and DC side voltage rise caused by grid voltage drops,a coordinated control strategy based on symmetrical and asymmetrical low voltage ride through of ro... In order to solve the problems of rotor overvoltage,overcurrent and DC side voltage rise caused by grid voltage drops,a coordinated control strategy based on symmetrical and asymmetrical low voltage ride through of rotor side converter of the doubly-fed generator is proposed.When the power grid voltage drops symmetrically,the generator approximate equation under steady-state conditions is no longer applicable.Considering the dynamic process of stator current excitation,according to the change of stator flux and the depth of voltage drop,the system can dynamically provide reactive power support for parallel nodes and suppress the rise of DC side voltage and rotor over-current.When the grid voltage drops asymmetrically,the positive and negative sequence components are separated in the rotating coordinate system.The doubly fed generator model is established to suppress the rotor positive sequence current and negative sequence current respectively.At the same time,the output voltage limit of the converter is discussed,and the reference value is adjusted within the allowable output voltage range.In order to adapt to the occurrence of different types of power grid faults and complex operating conditions,a fast switching module of fault type detection and rotor control mode is designed to detect the type of power grid faults and voltage drop depth in real time and switch the rotor side control mode dynamically.Finally,the simulation model of the doubly fed wind turbine is constructed in Matlab/Simulink.The simulation results verify that the proposed control strategy can improve the low-voltage ride through performance of the system when dealing with the symmetrical and asymmetric voltage drop of the power grid and identify the power grid fault type and provide the correct control strategy. 展开更多
关键词 Doubly-fed wind turbines symmetrical faults asymmetrical faults low voltage ride through rotor side control fault type detection
下载PDF
Transient synchronous stability analysis and enhancement control strategy of a PLL-based VSC system during asymmetric grid faults 被引量:1
4
作者 Yi Luo Jun Yao +4 位作者 Zhaoyang Chen Sen Huang Shiyue Chen Qi Zhang Zhentao Qin 《Protection and Control of Modern Power Systems》 SCIE EI 2023年第2期304-320,共17页
The stability of a voltage source converters(VSC)system based on phase-locked loop(PLL)is very important issue during asymmetric grid faults.This paper establishes a transient synchronous stability model of a dual-seq... The stability of a voltage source converters(VSC)system based on phase-locked loop(PLL)is very important issue during asymmetric grid faults.This paper establishes a transient synchronous stability model of a dual-sequence PLL-based VSC system during low voltage ride-through by referring to the equivalent rotor swing equation of syn-chronous generators.Based on the model,the synchronization characteristics of the VSC system under asymmetric grid faults are described,and the interaction mechanisms,as well as the transient instability phenomena of positive and negative sequence PLL during asymmetric faults are explained.Using the equal area criterion,the influences of sequence control switching action,detection delay,and interaction between the positive and negative sequence PLL on the transient synchronous stability of the VSC system are analyzed,respectively.In addition,a transient stabil-ity assessment criterion based on the critical fault clearance angle and time and an enhancement control strategy based on the improved positive and negative sequence PLL are proposed.Finally,the analytical results are validated through simulation and experiments. 展开更多
关键词 Voltage source converters(VSC) Asymmetric grid faults Dual-sequence PLL Transient synchronous
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部