In this paper,a Slotted Stepped-Impedance Resonator (SSIR) is proposed.Due to the slots in the low-impedance section of the conventional SIR,the new resonator has a lower fundamental resonance f0 and can provide a pot...In this paper,a Slotted Stepped-Impedance Resonator (SSIR) is proposed.Due to the slots in the low-impedance section of the conventional SIR,the new resonator has a lower fundamental resonance f0 and can provide a potential finite transmission zero fz close to f0.Based on the proposed SSIR,a fourth-order Chebychev BandPass Filter (BPF) is designed at f0=1 GHz.The measured results show that a better than-65 dB rejection is achieved on both the lower and the upper stopband.Moreover,the new filter has a wide-30 dB rejection upper stopband from 1.13f0 to 6.52f0.The fabricated filter exhibits a size of The new filter has a planar topology and is easily integrated with modern portable communication systems.展开更多
A microstrip interlocked-coupled bandpass filter is proposed with a markedly compact structure. The low-impedance open-end line of the quarter-wavelength Stepped-Impedance Resonator (SIR) is replaced by two open-end h...A microstrip interlocked-coupled bandpass filter is proposed with a markedly compact structure. The low-impedance open-end line of the quarter-wavelength Stepped-Impedance Resonator (SIR) is replaced by two open-end high-impedance lines, which not only facilitate the coupling mechanism but also provide the strong electric coupling between resonators. With the proper utilization of folded SIRs, the occupied area of coupled-resonator pair can be reduced. By applying the proposed coupled-resonator pair, the passband filter with the compact size can be realized. Good agreement between measured and simulated results is observed. The proposed filter is desirable for compact and high-performance microwave circuit applications.展开更多
Compact dual-band bandpass filter(BPF)for the 5 th generation mobile communication technology(5 G)radio frequency(RF)front-end applications was presented based on multilayer stepped impedance resonators(SIRs).The mult...Compact dual-band bandpass filter(BPF)for the 5 th generation mobile communication technology(5 G)radio frequency(RF)front-end applications was presented based on multilayer stepped impedance resonators(SIRs).The multilayer dual-band SIR BPF can achieve high selectivity and four transmission zeros(TZs)near the passband edges by the quarter-wavelength tri-section SIRs.The multilayer dual-band SIR BPF is fabricated on a 3-layer FR-4 substrate with a compact dimension of 5.5 mm×5.0 mm×1.2 mm.The measured two passbands of the multilayer dual-band SIR BPF are 3.3 GHz-3.5 GHz and 4.8 GHz-5.0 GHz with insertion loss(IL)less than 2 dB respectively.Both measured and simulated results suggest that it is a possible candidate for the application of 5 G RF front-end at sub-6 GHz frequency band.展开更多
文摘In this paper,a Slotted Stepped-Impedance Resonator (SSIR) is proposed.Due to the slots in the low-impedance section of the conventional SIR,the new resonator has a lower fundamental resonance f0 and can provide a potential finite transmission zero fz close to f0.Based on the proposed SSIR,a fourth-order Chebychev BandPass Filter (BPF) is designed at f0=1 GHz.The measured results show that a better than-65 dB rejection is achieved on both the lower and the upper stopband.Moreover,the new filter has a wide-30 dB rejection upper stopband from 1.13f0 to 6.52f0.The fabricated filter exhibits a size of The new filter has a planar topology and is easily integrated with modern portable communication systems.
文摘A microstrip interlocked-coupled bandpass filter is proposed with a markedly compact structure. The low-impedance open-end line of the quarter-wavelength Stepped-Impedance Resonator (SIR) is replaced by two open-end high-impedance lines, which not only facilitate the coupling mechanism but also provide the strong electric coupling between resonators. With the proper utilization of folded SIRs, the occupied area of coupled-resonator pair can be reduced. By applying the proposed coupled-resonator pair, the passband filter with the compact size can be realized. Good agreement between measured and simulated results is observed. The proposed filter is desirable for compact and high-performance microwave circuit applications.
基金supported by the Beijing Natural Science Foundation(8202036)。
文摘Compact dual-band bandpass filter(BPF)for the 5 th generation mobile communication technology(5 G)radio frequency(RF)front-end applications was presented based on multilayer stepped impedance resonators(SIRs).The multilayer dual-band SIR BPF can achieve high selectivity and four transmission zeros(TZs)near the passband edges by the quarter-wavelength tri-section SIRs.The multilayer dual-band SIR BPF is fabricated on a 3-layer FR-4 substrate with a compact dimension of 5.5 mm×5.0 mm×1.2 mm.The measured two passbands of the multilayer dual-band SIR BPF are 3.3 GHz-3.5 GHz and 4.8 GHz-5.0 GHz with insertion loss(IL)less than 2 dB respectively.Both measured and simulated results suggest that it is a possible candidate for the application of 5 G RF front-end at sub-6 GHz frequency band.