This study utilizes the Dynamic Conditional Correlation-Generalized Autoregressive Conditional Heteroskedasticity (DCC-GARCH) model to investigate the dynamic relationship between Chinese and U.S. stock markets amid t...This study utilizes the Dynamic Conditional Correlation-Generalized Autoregressive Conditional Heteroskedasticity (DCC-GARCH) model to investigate the dynamic relationship between Chinese and U.S. stock markets amid the COVID-19 pandemic. Initially, a univariate GARCH model is developed to derive residual sequences, which are then used to estimate the DCC model parameters. The research reveals a significant rise in the interconnection between the Chinese and U.S. stock markets during the pandemic. The S&P 500 index displayed higher sensitivity and greater volatility in response to the pandemic, whereas the CSI 300 index showed superior resilience and stability. Analysis and model estimation suggest that the market’s dependence on historical data has intensified and its sensitivity to recent shocks has heightened. Predictions from the model indicate increased market volatility during the pandemic. While the model is proficient in capturing market trends, there remains potential for enhancing the accuracy of specific volatility predictions. The study proposes recommendations for policymakers and investors, highlighting the importance of improved cooperation in international financial market regulation and investor education.展开更多
Background:The purpose of this study is to examine volatility spillover effects between stock market and foreign exchange market in selected Asian countries;Pakistan,India,Sri Lanka,China,Hong Kong and Japan.This stud...Background:The purpose of this study is to examine volatility spillover effects between stock market and foreign exchange market in selected Asian countries;Pakistan,India,Sri Lanka,China,Hong Kong and Japan.This study considered daily data from 4th January,1999 to 1st January,2014.Methods:This study opted EGARCH(Exponential Generalized Auto Regressive Conditional Heteroskedasticity)model for the purpose of analyzing asymmetric volatility spillover effects between stock and foreign exchange market.Results:The EGARCH analyses reveal bidirectional asymmetric volatility spillover between stock market and foreign exchange market of Pakistan,China,Hong Kong and Sri Lanka.The results reveal unidirectional transmission of volatility from stock market to foreign exchange market of India.The analysis reveals no evidence of volatility transmission between the two markets in reference to Japan.Conclusions:The result of this study provide valuable insights to economic policy makers for financial stability perspective and to investors regarding decision making in international portfolio and currency risk strategies.展开更多
Understanding the irrational sentiments of the market participants is necessary for making good investment decisions.Despite the recent academic effort to examine the role of investors’sentiments in market dynamics,t...Understanding the irrational sentiments of the market participants is necessary for making good investment decisions.Despite the recent academic effort to examine the role of investors’sentiments in market dynamics,there is a lack of consensus in delineating the structural aspect of market sentiments.This research is an attempt to address this gap.The study explores the role of irrational investors’sentiments in determining stock market volatility.By employing monthly data on market-related implicit indices,we constructed an irrational sentiment index using principal component analysis.This sentiment index was modelled in the GARCH and Granger causality framework to analyse its contribution to volatility.The results showed that irrational sentiment significantly causes excess market volatility.Moreover,the study indicates that the asymmetrical aspects of an inefficient market contribute to excess volatility and returns.The findings are crucial for retail investors as well as portfolio managers seeking to make an optimum portfolio to maximise profits.展开更多
Under the NTS Reform(Non-Tradable Share Reform),this paper explores the cross-sectional relations between illiquidity and stock returns by considering the idiosyncratic volatility biases in the Shanghai A’Share stock...Under the NTS Reform(Non-Tradable Share Reform),this paper explores the cross-sectional relations between illiquidity and stock returns by considering the idiosyncratic volatility biases in the Shanghai A’Share stock market.Differing from prior studies,stock returns are decreasing in a stock’s illiquidity both before and after the NTS Reform.Regarding the negative relation between illiquidity and stock returns,we find that stock returns show no clear relation with illiquidity after controlling for idiosyncratic volatility biases.Furthermore,we use residual approach to eliminate the effect of idiosyncratic volatility,and find there exists a positive relation between illiquidity and stock returns after the NTS Reform.展开更多
This paper mainly through the comparison of GARCH-VaR China stock market board,small board and gem in the United States correspond to the three stock index volatility,volatility between stock indexes obtained U.S.stoc...This paper mainly through the comparison of GARCH-VaR China stock market board,small board and gem in the United States correspond to the three stock index volatility,volatility between stock indexes obtained U.S.stock market volatility risk multi-level market differences.As a suggestion and reference for investors,it can also provide reference for the supervision department of stock market risk.Based on the empirical research,analyzes the advantages and disadvantages of traditional risk measurement methods,and combined with GARCH model with high degree of complexity and the practice effect analysis,trying to find the objective measure stock model analysis.In the specific study of the volatility of the stock market,through the comparison of China’s three major plates and the market classification mechanism of mature U.S.stock market,combined with the objective situation of the market,draw conclusions and change expectations.From the empirical results,the U.S.stock market has recovered after the financial crisis,and its performance on risk volatility is better than China’s three major plates.From the comparison of the stock market in the same country,the small and medium-sized plates tend to have greater risks,while the risks of the main board and the gem have the characteristics of low average value but frequent fluctuations.展开更多
With the gradual completion of the split-share structure reform,private placement has gradually become the mainstream of refinancing. One of the points that the practical and theoretical circles are widely concerned a...With the gradual completion of the split-share structure reform,private placement has gradually become the mainstream of refinancing. One of the points that the practical and theoretical circles are widely concerned about is that the private placement price is often higher than the market price at the time of the private placement. High discounts are often accompanied by the transmission of benefits,and the increase in insider information will lead to the risk of a stock market crash? This paper intends to use the data of A-share listed companies from 2006 to 2015 to empirically study the relationship between the discount on private placements and the risk of stock market crash. At the same time,this paper examines whether the degree of information asymmetry plays a regulatory role in the relationship between the discount on private placements and the risk of stock market crash. This paper provides a certain reference for the regulatory authorities to improve the relevant laws and regulations in the private placement,and to provide a certain reference for the protection of the interests of small and medium-sized investors.展开更多
This study examines the statistical properties required to model the dynamics of both the returns and volatility series of the daily stock market returns in six Gulf Cooperation Council countries,namely Bahrain,Oman,K...This study examines the statistical properties required to model the dynamics of both the returns and volatility series of the daily stock market returns in six Gulf Cooperation Council countries,namely Bahrain,Oman,Kuwait,Qatar,Saudi Arabia,and the United Arab Emirates,under different financial and economic circumstances.The empiri-cal investigation is conducted using daily data from June 1,2005 to July 1,2019.The analysis is conducted using a set of double long-memory specifications with some significant features such as long-range dependencies,asymmetries in conditional variances,non-linearity,and multiple seasonality or time-varying correlations.Our study indicates that the joint dual long-memory process can adequately estimate long-memory dynamics in returns and volatility.The in-sample diagnostic tests as well as out-of-sample forecasting results demonstrate the prevalence of the Autoregressive Fractionally Integrated Moving Average and Hyperbolic Asymmetric Power Autoregressive Conditional Heteroskedasticity modeling process over other competing models in fitting the first and the second conditional moments of the market returns.Moreover,the empirical results show that the proposed model offers an interesting framework to describe the long-range dependence in returns and seasonal persistence to shocks in conditional volatility and strongly support the estimation of dynamic returns that allow for time-varying correlations.A noteworthy finding is that the long-memory dependencies in the conditional variance processes of stock market returns appear important,asymmetric,and differ in their volatility responses to unexpected shocks.Our evidence suggests that these markets are not completely efficient in processing regional news,thus providing a sound alternative for regional portfolio diversification.展开更多
The purpose of this study is to investigate the financial integration of the stock markets of the ASEAN 5 + 3 countries. These countries include Indonesia, Malaysia, Philippines, Singapore, Thailand, China, Japan, an...The purpose of this study is to investigate the financial integration of the stock markets of the ASEAN 5 + 3 countries. These countries include Indonesia, Malaysia, Philippines, Singapore, Thailand, China, Japan, and South Korea. The research determined the stock return volatility for each country's index during the first decade of the new millennium. The findings showed that there is the presence of integration and co-integration with Philippine index's return with the index's returns of the following countries: Indonesia, Singapore, and Thailand. Furthermore, there is evidence of volatility clustering in these stock markets. The study concluded with the policy implications of greater integration in light of the planned cross trading among four ASEAN bourses, namely, Philippines, Singapore, Thailand, and Malaysia by 2012.展开更多
This paper incorporates the Baidu Index into various heterogeneous autoregressive type time series models and shows that the Baidu Index is a superior predictor of realized volatility in the SSE 50 Index.Furthermore,t...This paper incorporates the Baidu Index into various heterogeneous autoregressive type time series models and shows that the Baidu Index is a superior predictor of realized volatility in the SSE 50 Index.Furthermore,the predictability of the Baidu Index is found to rise as the forecasting horizon increases.We also find that continuous components enhance predictive power across all horizons,but that increases are only sustained in the short and medium terms,as the long-term impact on volatility is less persistent.Our findings should be expected to influence investors interested in constructing trading strategies based on realized volatility.展开更多
This paper examines presence of some stylized facts of short-term stock prices in the banking sector of the Nigerian Stock Market (NSM). Non-normality, lack of autocorrelation in the returns at first lag and significa...This paper examines presence of some stylized facts of short-term stock prices in the banking sector of the Nigerian Stock Market (NSM). Non-normality, lack of autocorrelation in the returns at first lag and significant positive autocorrelation in higher magnitude returns, widely studied in other markets, are investigated using daily closing stock prices of the four major Nigerian banks (Access, First, Guaranty Trust and United Bank for Africa (UBA)), from 2001 to 2013;encompassing periods of different financial scenarios. Jarque-Bera (JB), Doonik-Hansen, Kolmogrov-Smirnov and Ljung-Box (Q) test statistics are applied. Our findings reveal that the four banks stocks behave slightly different, but generally possess the stylized facts found in other markets. Observed is that, while the distributions of the returns for two of these banks (First and UBA) are approximately symmetric and leptokurtic;those of Access and Guaranty Trust banks are significantly non-symmetric and leptokurtic, thus non-normally distributed. Also established is that, while autocorrelation functions of daily returns are either negative or zero, those of both absolute returns and the squared returns are mostly positive. The autocorrelations of absolute returns are found to be predominantly positive and more persistent than those of the squared returns;indicating volatility clustering. Consequently, we conclude that the short-term stock prices of these banks behave like those of other markets. Some implications of the results for financial investment and stock market behaviour in the banking sector of NSM are discussed.展开更多
Derivatives were introduced in Indian financial market to reduce volatility in the spot market.The present study attempts to study the impact of derivatives on stock market volatility.In the present study,data have be...Derivatives were introduced in Indian financial market to reduce volatility in the spot market.The present study attempts to study the impact of derivatives on stock market volatility.In the present study,data have been taken for Nifty Index for a period from 01-01-1996 to 05-02-2016.For analyzing the impact of introduction of derivatives on Nifty Index Volatility,we have taken proxy variable of Nifty Junior Index and Standard&Poor’s 500(S&P 500)Index returns.The data have also been classified into pre-futures(introduced on 12-06-2000)and post-futures and pre-options(introduced on 04-06-2001)and post-options period.The results show that volatility has reduced after introduction of futures and options.展开更多
This study examines the relationship between positive and negative investor sentiments and stock market returns and volatility in Group of 20 countries using variousmethods, including panel regression with fixed effec...This study examines the relationship between positive and negative investor sentiments and stock market returns and volatility in Group of 20 countries using variousmethods, including panel regression with fixed effects, panel quantile regressions, apanel vector autoregression (PVAR) model, and country-specific regressions. We proxyfor negative and positive investor sentiments using the Google Search Volume Indexfor terms related to the coronavirus disease (COVID-19) and COVID-19 vaccine, respectively. Using weekly data from March 2020 to May 2021, we document significantrelationships between positive and negative investor sentiments and stock marketreturns and volatility. Specifically, an increase in positive investor sentiment leads toan increase in stock returns while negative investor sentiment decreases stock returnsat lower quantiles. The effect of investor sentiment on volatility is consistent acrossthe distribution: negative sentiment increases volatility, whereas positive sentimentreduces volatility. These results are robust as they are corroborated by Granger causalitytests and a PVAR model. The findings may have portfolio implications as they indicatethat proxies for positive and negative investor sentiments seem to be good predictorsof stock returns and volatility during the pandemic.展开更多
While a large number of studies have been reported in the literature with reference to the use of Regression model and Artificial Neural Network (ANN) models in predicting stock prices in western countries, the Chines...While a large number of studies have been reported in the literature with reference to the use of Regression model and Artificial Neural Network (ANN) models in predicting stock prices in western countries, the Chinese stock market is much less studied. Note that the latter is growing rapidly, will overtake USA one in 20 - 30 years time and thus be-comes a very important place for investors worldwide. In this paper, an attempt is made at predicting the Shanghai Composite Index returns and price volatility, on a daily and weekly basis. In the paper, two different types of prediction models, namely the Regression and Neural Network models are used for the prediction task and multiple technical indicators are included in the models as inputs. The performances of the two models are compared and evaluated in terms of di- rectional accuracy. Their performances are also rigorously compared in terms of economic criteria like annualized return rate (ARR) from simulated trading. In this paper, both trading with and without short selling has been consid- ered, and the results show in most cases, trading with short selling leads to higher profits. Also, both the cases with and without commission costs are discussed to show the effects of commission costs when the trading systems are in actual use.展开更多
The successive changes of asset prices are the most visible manifestation of financial markets dynamics. There exist different views about factors generating these changes, but many researchers and practitioners agree...The successive changes of asset prices are the most visible manifestation of financial markets dynamics. There exist different views about factors generating these changes, but many researchers and practitioners agree that the most important among them is the impact of information flow. According to the market microstructure theories, it depends mainly on the behavior of informed and uniformed traders. In the paper, we investigate dependencies between the possible proxies of information process: price duration and corresponding to it volume change and return. Our main objective is to answer the question about the most important factor in the process of discovering information by uniformed traders. We apply a set of models for volatility, volume and duration data. Our analysis is performed for selected equities listed on the Warsaw Stock Exchange and uses tick-by-tick data. The obtained results show that the stock liquidity on this leading stock market in Central and Eastern Europe is the most important factor influencing the process of discovering information by uninformed traders.展开更多
The financial market is the core of national economic development,and stocks play an important role in the financial market.Analyzing stock prices has become the focus of investors,analysts,and people in related field...The financial market is the core of national economic development,and stocks play an important role in the financial market.Analyzing stock prices has become the focus of investors,analysts,and people in related fields.This paper evaluates the volatility of Apple Inc.(AAPL)returns using five generalized autoregressive conditional heteroskedasticity(GARCH)models:sGARCH with constant mean,GARCH with sstd,GJR-GARCH,AR(1)GJR-GARCH,and GJR-GARCH in mean.The distribution of AAPL’s closing price and earnings data was analyzed,and skewed student t-distribution(sstd)and normal distribution(norm)were used to further compare the data distribution of the five models and capture the shape,skewness,and loglikelihood in Model 4-AR(1)GJR-GARCH.Through further analysis,the results showed that Model 4,AR(1)GJR-GARCH,is the optimal model to describe the volatility of the return series of AAPL.The analysis of the research process is both,a process of exploration and reflection.By analyzing the stock price of AAPL,we reflect on the shortcomings of previous analysis methods,clarify the purpose of the experiment,and identify the optimal analysis model.展开更多
Modem China is undergoing a variety of social conflicts as the arrival of new era with thetransformation of the principal contradiction. Then monitoring the society stable is a huge workload.Online societal risk perce...Modem China is undergoing a variety of social conflicts as the arrival of new era with thetransformation of the principal contradiction. Then monitoring the society stable is a huge workload.Online societal risk perception is acquired by mapping on-line public concerns respectively intosocietal risk events including national security, economy & finance, public morals, daily life, socialstability, government management, and resources & environment, and then provides one kind ofmeasurement toward the society state. Obviously, stable and harmonious social situations are the basicguarantee for the healthy development of the stock market. Thus we concern whether the variations ofthe societal risk are related to stock market volatility. We study their relationships by two steps, firstthe relationships between search trends and societal risk perception; next the relationships betweensocietal risk perception and stock volatility. The weekend and holiday effects in China stock market aretaken into consideration. Three different econometric methods are explored to observe the impacts ofvariations of societal risk on Shanghai Composite Index and Shenzhen Composite Index. 3 majorfindings are addressed. Firstly, there exist causal relations between Baidu Index and societal riskperception. Secondly, the perception of finance & economy, social stability, and governmentmanagement has distinguishing effects on the volatility of both Shanghai Composite Index and Shenzhen Composite Index. Thirdly, the weekend and holiday effects of societal risk perception on the stock market are verified. The research demonstrates that capturing societal risk based on on-line public concerns is feasible and meaningful.展开更多
The generalized autoregressive conditional heteroskedasticity(GARCH) type models are used to investigate the volatility of Bangladesh stock market. The findings of the study demonstrate that the index volatility chara...The generalized autoregressive conditional heteroskedasticity(GARCH) type models are used to investigate the volatility of Bangladesh stock market. The findings of the study demonstrate that the index volatility characteristics changes over time. The article shows that the data are divided into three sub-periods: pre crisis, crisis, and post crisis. Accordingly, the results of the findings indicate changes in the GARCH-type models parameter, risk premium and persistence of volatility in different periods. A significant "low-yield associated with high-risk" phenomenon is detected in the crisis period and the "leverage effect" occurs in each periods. The investors are irrational which is based on assumption of risk and return characteristics of assets. Consequently, the market is not as mature as developed market. It is found in the article that the threshold generalized autoregressive conditional heteroskedasticity(TGARCH) model is more accurate for the model accuracy. Additionally, statistic error measurements indicate that GARCH model is more efficient than others and it has also more forecasting ability.展开更多
This study investigates the role of oil futures price information on forecasting the US stock market volatility using the HAR framework.In-sample results indicate that oil futures intraday information is helpful to in...This study investigates the role of oil futures price information on forecasting the US stock market volatility using the HAR framework.In-sample results indicate that oil futures intraday information is helpful to increase the predictability.Moreover,compared to the benchmark model,the proposed models improve their predictive ability with the help of oil futures realized volatility.In particular,the multivariate HAR model outperforms the univariate model.Accordingly,considering the contemporaneous connection is useful to predict the US stock market volatility.Furthermore,these findings are consistent across a variety of robust checks.展开更多
文摘This study utilizes the Dynamic Conditional Correlation-Generalized Autoregressive Conditional Heteroskedasticity (DCC-GARCH) model to investigate the dynamic relationship between Chinese and U.S. stock markets amid the COVID-19 pandemic. Initially, a univariate GARCH model is developed to derive residual sequences, which are then used to estimate the DCC model parameters. The research reveals a significant rise in the interconnection between the Chinese and U.S. stock markets during the pandemic. The S&P 500 index displayed higher sensitivity and greater volatility in response to the pandemic, whereas the CSI 300 index showed superior resilience and stability. Analysis and model estimation suggest that the market’s dependence on historical data has intensified and its sensitivity to recent shocks has heightened. Predictions from the model indicate increased market volatility during the pandemic. While the model is proficient in capturing market trends, there remains potential for enhancing the accuracy of specific volatility predictions. The study proposes recommendations for policymakers and investors, highlighting the importance of improved cooperation in international financial market regulation and investor education.
文摘Background:The purpose of this study is to examine volatility spillover effects between stock market and foreign exchange market in selected Asian countries;Pakistan,India,Sri Lanka,China,Hong Kong and Japan.This study considered daily data from 4th January,1999 to 1st January,2014.Methods:This study opted EGARCH(Exponential Generalized Auto Regressive Conditional Heteroskedasticity)model for the purpose of analyzing asymmetric volatility spillover effects between stock and foreign exchange market.Results:The EGARCH analyses reveal bidirectional asymmetric volatility spillover between stock market and foreign exchange market of Pakistan,China,Hong Kong and Sri Lanka.The results reveal unidirectional transmission of volatility from stock market to foreign exchange market of India.The analysis reveals no evidence of volatility transmission between the two markets in reference to Japan.Conclusions:The result of this study provide valuable insights to economic policy makers for financial stability perspective and to investors regarding decision making in international portfolio and currency risk strategies.
文摘Understanding the irrational sentiments of the market participants is necessary for making good investment decisions.Despite the recent academic effort to examine the role of investors’sentiments in market dynamics,there is a lack of consensus in delineating the structural aspect of market sentiments.This research is an attempt to address this gap.The study explores the role of irrational investors’sentiments in determining stock market volatility.By employing monthly data on market-related implicit indices,we constructed an irrational sentiment index using principal component analysis.This sentiment index was modelled in the GARCH and Granger causality framework to analyse its contribution to volatility.The results showed that irrational sentiment significantly causes excess market volatility.Moreover,the study indicates that the asymmetrical aspects of an inefficient market contribute to excess volatility and returns.The findings are crucial for retail investors as well as portfolio managers seeking to make an optimum portfolio to maximise profits.
文摘Under the NTS Reform(Non-Tradable Share Reform),this paper explores the cross-sectional relations between illiquidity and stock returns by considering the idiosyncratic volatility biases in the Shanghai A’Share stock market.Differing from prior studies,stock returns are decreasing in a stock’s illiquidity both before and after the NTS Reform.Regarding the negative relation between illiquidity and stock returns,we find that stock returns show no clear relation with illiquidity after controlling for idiosyncratic volatility biases.Furthermore,we use residual approach to eliminate the effect of idiosyncratic volatility,and find there exists a positive relation between illiquidity and stock returns after the NTS Reform.
文摘This paper mainly through the comparison of GARCH-VaR China stock market board,small board and gem in the United States correspond to the three stock index volatility,volatility between stock indexes obtained U.S.stock market volatility risk multi-level market differences.As a suggestion and reference for investors,it can also provide reference for the supervision department of stock market risk.Based on the empirical research,analyzes the advantages and disadvantages of traditional risk measurement methods,and combined with GARCH model with high degree of complexity and the practice effect analysis,trying to find the objective measure stock model analysis.In the specific study of the volatility of the stock market,through the comparison of China’s three major plates and the market classification mechanism of mature U.S.stock market,combined with the objective situation of the market,draw conclusions and change expectations.From the empirical results,the U.S.stock market has recovered after the financial crisis,and its performance on risk volatility is better than China’s three major plates.From the comparison of the stock market in the same country,the small and medium-sized plates tend to have greater risks,while the risks of the main board and the gem have the characteristics of low average value but frequent fluctuations.
文摘With the gradual completion of the split-share structure reform,private placement has gradually become the mainstream of refinancing. One of the points that the practical and theoretical circles are widely concerned about is that the private placement price is often higher than the market price at the time of the private placement. High discounts are often accompanied by the transmission of benefits,and the increase in insider information will lead to the risk of a stock market crash? This paper intends to use the data of A-share listed companies from 2006 to 2015 to empirically study the relationship between the discount on private placements and the risk of stock market crash. At the same time,this paper examines whether the degree of information asymmetry plays a regulatory role in the relationship between the discount on private placements and the risk of stock market crash. This paper provides a certain reference for the regulatory authorities to improve the relevant laws and regulations in the private placement,and to provide a certain reference for the protection of the interests of small and medium-sized investors.
文摘This study examines the statistical properties required to model the dynamics of both the returns and volatility series of the daily stock market returns in six Gulf Cooperation Council countries,namely Bahrain,Oman,Kuwait,Qatar,Saudi Arabia,and the United Arab Emirates,under different financial and economic circumstances.The empiri-cal investigation is conducted using daily data from June 1,2005 to July 1,2019.The analysis is conducted using a set of double long-memory specifications with some significant features such as long-range dependencies,asymmetries in conditional variances,non-linearity,and multiple seasonality or time-varying correlations.Our study indicates that the joint dual long-memory process can adequately estimate long-memory dynamics in returns and volatility.The in-sample diagnostic tests as well as out-of-sample forecasting results demonstrate the prevalence of the Autoregressive Fractionally Integrated Moving Average and Hyperbolic Asymmetric Power Autoregressive Conditional Heteroskedasticity modeling process over other competing models in fitting the first and the second conditional moments of the market returns.Moreover,the empirical results show that the proposed model offers an interesting framework to describe the long-range dependence in returns and seasonal persistence to shocks in conditional volatility and strongly support the estimation of dynamic returns that allow for time-varying correlations.A noteworthy finding is that the long-memory dependencies in the conditional variance processes of stock market returns appear important,asymmetric,and differ in their volatility responses to unexpected shocks.Our evidence suggests that these markets are not completely efficient in processing regional news,thus providing a sound alternative for regional portfolio diversification.
文摘The purpose of this study is to investigate the financial integration of the stock markets of the ASEAN 5 + 3 countries. These countries include Indonesia, Malaysia, Philippines, Singapore, Thailand, China, Japan, and South Korea. The research determined the stock return volatility for each country's index during the first decade of the new millennium. The findings showed that there is the presence of integration and co-integration with Philippine index's return with the index's returns of the following countries: Indonesia, Singapore, and Thailand. Furthermore, there is evidence of volatility clustering in these stock markets. The study concluded with the policy implications of greater integration in light of the planned cross trading among four ASEAN bourses, namely, Philippines, Singapore, Thailand, and Malaysia by 2012.
基金This work is supported by the National Natural Science Foundation of China(71790594,71701150,and U1811462).
文摘This paper incorporates the Baidu Index into various heterogeneous autoregressive type time series models and shows that the Baidu Index is a superior predictor of realized volatility in the SSE 50 Index.Furthermore,the predictability of the Baidu Index is found to rise as the forecasting horizon increases.We also find that continuous components enhance predictive power across all horizons,but that increases are only sustained in the short and medium terms,as the long-term impact on volatility is less persistent.Our findings should be expected to influence investors interested in constructing trading strategies based on realized volatility.
文摘This paper examines presence of some stylized facts of short-term stock prices in the banking sector of the Nigerian Stock Market (NSM). Non-normality, lack of autocorrelation in the returns at first lag and significant positive autocorrelation in higher magnitude returns, widely studied in other markets, are investigated using daily closing stock prices of the four major Nigerian banks (Access, First, Guaranty Trust and United Bank for Africa (UBA)), from 2001 to 2013;encompassing periods of different financial scenarios. Jarque-Bera (JB), Doonik-Hansen, Kolmogrov-Smirnov and Ljung-Box (Q) test statistics are applied. Our findings reveal that the four banks stocks behave slightly different, but generally possess the stylized facts found in other markets. Observed is that, while the distributions of the returns for two of these banks (First and UBA) are approximately symmetric and leptokurtic;those of Access and Guaranty Trust banks are significantly non-symmetric and leptokurtic, thus non-normally distributed. Also established is that, while autocorrelation functions of daily returns are either negative or zero, those of both absolute returns and the squared returns are mostly positive. The autocorrelations of absolute returns are found to be predominantly positive and more persistent than those of the squared returns;indicating volatility clustering. Consequently, we conclude that the short-term stock prices of these banks behave like those of other markets. Some implications of the results for financial investment and stock market behaviour in the banking sector of NSM are discussed.
文摘Derivatives were introduced in Indian financial market to reduce volatility in the spot market.The present study attempts to study the impact of derivatives on stock market volatility.In the present study,data have been taken for Nifty Index for a period from 01-01-1996 to 05-02-2016.For analyzing the impact of introduction of derivatives on Nifty Index Volatility,we have taken proxy variable of Nifty Junior Index and Standard&Poor’s 500(S&P 500)Index returns.The data have also been classified into pre-futures(introduced on 12-06-2000)and post-futures and pre-options(introduced on 04-06-2001)and post-options period.The results show that volatility has reduced after introduction of futures and options.
文摘This study examines the relationship between positive and negative investor sentiments and stock market returns and volatility in Group of 20 countries using variousmethods, including panel regression with fixed effects, panel quantile regressions, apanel vector autoregression (PVAR) model, and country-specific regressions. We proxyfor negative and positive investor sentiments using the Google Search Volume Indexfor terms related to the coronavirus disease (COVID-19) and COVID-19 vaccine, respectively. Using weekly data from March 2020 to May 2021, we document significantrelationships between positive and negative investor sentiments and stock marketreturns and volatility. Specifically, an increase in positive investor sentiment leads toan increase in stock returns while negative investor sentiment decreases stock returnsat lower quantiles. The effect of investor sentiment on volatility is consistent acrossthe distribution: negative sentiment increases volatility, whereas positive sentimentreduces volatility. These results are robust as they are corroborated by Granger causalitytests and a PVAR model. The findings may have portfolio implications as they indicatethat proxies for positive and negative investor sentiments seem to be good predictorsof stock returns and volatility during the pandemic.
文摘While a large number of studies have been reported in the literature with reference to the use of Regression model and Artificial Neural Network (ANN) models in predicting stock prices in western countries, the Chinese stock market is much less studied. Note that the latter is growing rapidly, will overtake USA one in 20 - 30 years time and thus be-comes a very important place for investors worldwide. In this paper, an attempt is made at predicting the Shanghai Composite Index returns and price volatility, on a daily and weekly basis. In the paper, two different types of prediction models, namely the Regression and Neural Network models are used for the prediction task and multiple technical indicators are included in the models as inputs. The performances of the two models are compared and evaluated in terms of di- rectional accuracy. Their performances are also rigorously compared in terms of economic criteria like annualized return rate (ARR) from simulated trading. In this paper, both trading with and without short selling has been consid- ered, and the results show in most cases, trading with short selling leads to higher profits. Also, both the cases with and without commission costs are discussed to show the effects of commission costs when the trading systems are in actual use.
文摘The successive changes of asset prices are the most visible manifestation of financial markets dynamics. There exist different views about factors generating these changes, but many researchers and practitioners agree that the most important among them is the impact of information flow. According to the market microstructure theories, it depends mainly on the behavior of informed and uniformed traders. In the paper, we investigate dependencies between the possible proxies of information process: price duration and corresponding to it volume change and return. Our main objective is to answer the question about the most important factor in the process of discovering information by uniformed traders. We apply a set of models for volatility, volume and duration data. Our analysis is performed for selected equities listed on the Warsaw Stock Exchange and uses tick-by-tick data. The obtained results show that the stock liquidity on this leading stock market in Central and Eastern Europe is the most important factor influencing the process of discovering information by uninformed traders.
文摘The financial market is the core of national economic development,and stocks play an important role in the financial market.Analyzing stock prices has become the focus of investors,analysts,and people in related fields.This paper evaluates the volatility of Apple Inc.(AAPL)returns using five generalized autoregressive conditional heteroskedasticity(GARCH)models:sGARCH with constant mean,GARCH with sstd,GJR-GARCH,AR(1)GJR-GARCH,and GJR-GARCH in mean.The distribution of AAPL’s closing price and earnings data was analyzed,and skewed student t-distribution(sstd)and normal distribution(norm)were used to further compare the data distribution of the five models and capture the shape,skewness,and loglikelihood in Model 4-AR(1)GJR-GARCH.Through further analysis,the results showed that Model 4,AR(1)GJR-GARCH,is the optimal model to describe the volatility of the return series of AAPL.The analysis of the research process is both,a process of exploration and reflection.By analyzing the stock price of AAPL,we reflect on the shortcomings of previous analysis methods,clarify the purpose of the experiment,and identify the optimal analysis model.
基金This research is supported by National Key Research and Development Program of China (2016YFB1000902) and National Natural Science Foundation of China (61473284 & 71731002).
文摘Modem China is undergoing a variety of social conflicts as the arrival of new era with thetransformation of the principal contradiction. Then monitoring the society stable is a huge workload.Online societal risk perception is acquired by mapping on-line public concerns respectively intosocietal risk events including national security, economy & finance, public morals, daily life, socialstability, government management, and resources & environment, and then provides one kind ofmeasurement toward the society state. Obviously, stable and harmonious social situations are the basicguarantee for the healthy development of the stock market. Thus we concern whether the variations ofthe societal risk are related to stock market volatility. We study their relationships by two steps, firstthe relationships between search trends and societal risk perception; next the relationships betweensocietal risk perception and stock volatility. The weekend and holiday effects in China stock market aretaken into consideration. Three different econometric methods are explored to observe the impacts ofvariations of societal risk on Shanghai Composite Index and Shenzhen Composite Index. 3 majorfindings are addressed. Firstly, there exist causal relations between Baidu Index and societal riskperception. Secondly, the perception of finance & economy, social stability, and governmentmanagement has distinguishing effects on the volatility of both Shanghai Composite Index and Shenzhen Composite Index. Thirdly, the weekend and holiday effects of societal risk perception on the stock market are verified. The research demonstrates that capturing societal risk based on on-line public concerns is feasible and meaningful.
基金Supported by the National Natural Science Foundation of China(71490725)the Humanities and Social Science Project of Ministry of Education(14YJA630015)
文摘The generalized autoregressive conditional heteroskedasticity(GARCH) type models are used to investigate the volatility of Bangladesh stock market. The findings of the study demonstrate that the index volatility characteristics changes over time. The article shows that the data are divided into three sub-periods: pre crisis, crisis, and post crisis. Accordingly, the results of the findings indicate changes in the GARCH-type models parameter, risk premium and persistence of volatility in different periods. A significant "low-yield associated with high-risk" phenomenon is detected in the crisis period and the "leverage effect" occurs in each periods. The investors are irrational which is based on assumption of risk and return characteristics of assets. Consequently, the market is not as mature as developed market. It is found in the article that the threshold generalized autoregressive conditional heteroskedasticity(TGARCH) model is more accurate for the model accuracy. Additionally, statistic error measurements indicate that GARCH model is more efficient than others and it has also more forecasting ability.
基金supported by the Natural Science Foundation of China[71701170,71901041,71971191,72071162]
文摘This study investigates the role of oil futures price information on forecasting the US stock market volatility using the HAR framework.In-sample results indicate that oil futures intraday information is helpful to increase the predictability.Moreover,compared to the benchmark model,the proposed models improve their predictive ability with the help of oil futures realized volatility.In particular,the multivariate HAR model outperforms the univariate model.Accordingly,considering the contemporaneous connection is useful to predict the US stock market volatility.Furthermore,these findings are consistent across a variety of robust checks.