The quasilinear hyperbolic equation with nonlinear damping is considered in this paper,a new asymptotic profile for the solution to the equation is obtained by suitably choosing the initial data of the corresponding p...The quasilinear hyperbolic equation with nonlinear damping is considered in this paper,a new asymptotic profile for the solution to the equation is obtained by suitably choosing the initial data of the corresponding parabolic equation,the convergence rates of the new profile are better than that obtained by Nishihara(1997,J.Differential Equations 137,384-395) and H.-J.Zhao(2000,J.Differential Equations 167,467-494).展开更多
The proximal alternating linearized minimization(PALM)method suits well for solving blockstructured optimization problems,which are ubiquitous in real applications.In the cases where subproblems do not have closed-for...The proximal alternating linearized minimization(PALM)method suits well for solving blockstructured optimization problems,which are ubiquitous in real applications.In the cases where subproblems do not have closed-form solutions,e.g.,due to complex constraints,infeasible subsolvers are indispensable,giving rise to an infeasible inexact PALM(PALM-I).Numerous efforts have been devoted to analyzing the feasible PALM,while little attention has been paid to the PALM-I.The usage of the PALM-I thus lacks a theoretical guarantee.The essential difficulty of analysis consists in the objective value nonmonotonicity induced by the infeasibility.We study in the present work the convergence properties of the PALM-I.In particular,we construct a surrogate sequence to surmount the nonmonotonicity issue and devise an implementable inexact criterion.Based upon these,we manage to establish the stationarity of any accumulation point,and moreover,show the iterate convergence and the asymptotic convergence rates under the assumption of the Lojasiewicz property.The prominent advantages of the PALM-I on CPU time are illustrated via numerical experiments on problems arising from quantum physics and 3-dimensional anisotropic frictional contact.展开更多
We propose a nonparametric change point estimator in the distributions of a sequence of independent observations in terms of the test statistics given by Huˇskov′a and Meintanis(2006) that are based on weighted empi...We propose a nonparametric change point estimator in the distributions of a sequence of independent observations in terms of the test statistics given by Huˇskov′a and Meintanis(2006) that are based on weighted empirical characteristic functions. The weight function ω(t; a) under consideration includes the two weight functions from Huˇskov′a and Meintanis(2006) plus the weight function used by Matteson and James(2014),where a is a tuning parameter. Under the local alternative hypothesis, we establish the consistency, convergence rate, and asymptotic distribution of this change point estimator which is the maxima of a two-side Brownian motion with a drift. Since the performance of the change point estimator depends on a in use, we thus propose an algorithm for choosing an appropriate value of a, denoted by a_s which is also justified. Our simulation study shows that the change point estimate obtained by using a_s has a satisfactory performance. We also apply our method to a real dataset.展开更多
Separable nonlinear least squares problems are a special class of nonlinear least squares problems, where the objective functions are linear and nonlinear on different parts of variables. Such problems have broad appl...Separable nonlinear least squares problems are a special class of nonlinear least squares problems, where the objective functions are linear and nonlinear on different parts of variables. Such problems have broad applications in practice. Most existing algorithms for this kind of problems are derived from the variable projection method proposed by Golub and Pereyra, which utilizes the separability under a separate framework. However, the methods based on variable projection strategy would be invalid if there exist some constraints to the variables, as the real problems always do, even if the constraint is simply the ball constraint. We present a new algorithm which is based on a special approximation to the Hessian by noticing the fact that certain terms of the Hessian can be derived from the gradient. Our method maintains all the advantages of variable projection based methods, and moreover it can be combined with trust region methods easily and can be applied to general constrained separable nonlinear problems. Convergence analysis of our method is presented and numerical results are also reported.展开更多
This paper deals with minimization problems in the calculus of variations set in a sequence of domains, the size of which tends to infinity in certain directions and such that the data only depend on the coordinates i...This paper deals with minimization problems in the calculus of variations set in a sequence of domains, the size of which tends to infinity in certain directions and such that the data only depend on the coordinates in the directions that remain constant. The authors study the asymptotic behavior of minimizers in various situations and show that they converge in an appropriate sense toward minimizers of a related energy functional in the constant directions.展开更多
基金National Natural Science Foundation of China(No.11301443,11171340)Specialized Research Fund for the Doctoral Program of Higher Education(No.20124301120002)+1 种基金Natural Science Foundation of Hunan Provincial(No.2015JJ3125)Scientific Research Fund of Hunan Provincial Education Department(No.13C935)
文摘The quasilinear hyperbolic equation with nonlinear damping is considered in this paper,a new asymptotic profile for the solution to the equation is obtained by suitably choosing the initial data of the corresponding parabolic equation,the convergence rates of the new profile are better than that obtained by Nishihara(1997,J.Differential Equations 137,384-395) and H.-J.Zhao(2000,J.Differential Equations 167,467-494).
基金supported by National Natural Science Foundation of China(Grant Nos.12125108,11971466,11991021,11991020,12021001 and 12288201)Key Research Program of Frontier Sciences,Chinese Academy of Sciences(Grant No.ZDBS-LY-7022)CAS(the Chinese Academy of Sciences)AMSS(Academy of Mathematics and Systems Science)-PolyU(The Hong Kong Polytechnic University)Joint Laboratory of Applied Mathematics.
文摘The proximal alternating linearized minimization(PALM)method suits well for solving blockstructured optimization problems,which are ubiquitous in real applications.In the cases where subproblems do not have closed-form solutions,e.g.,due to complex constraints,infeasible subsolvers are indispensable,giving rise to an infeasible inexact PALM(PALM-I).Numerous efforts have been devoted to analyzing the feasible PALM,while little attention has been paid to the PALM-I.The usage of the PALM-I thus lacks a theoretical guarantee.The essential difficulty of analysis consists in the objective value nonmonotonicity induced by the infeasibility.We study in the present work the convergence properties of the PALM-I.In particular,we construct a surrogate sequence to surmount the nonmonotonicity issue and devise an implementable inexact criterion.Based upon these,we manage to establish the stationarity of any accumulation point,and moreover,show the iterate convergence and the asymptotic convergence rates under the assumption of the Lojasiewicz property.The prominent advantages of the PALM-I on CPU time are illustrated via numerical experiments on problems arising from quantum physics and 3-dimensional anisotropic frictional contact.
基金supported by Natural Sciences and the Engineering Research Council of Canada (Grant No. 105557-2012)National Natural Science Foundation for Young Scientists of China (Grant No. 11201108)+1 种基金the National Statistical Research Plan Project (Grant No. 2012LZ009)the Humanities and Social Sciences Project from Ministry of Education of China (Grant No. 12YJC910007)
文摘We propose a nonparametric change point estimator in the distributions of a sequence of independent observations in terms of the test statistics given by Huˇskov′a and Meintanis(2006) that are based on weighted empirical characteristic functions. The weight function ω(t; a) under consideration includes the two weight functions from Huˇskov′a and Meintanis(2006) plus the weight function used by Matteson and James(2014),where a is a tuning parameter. Under the local alternative hypothesis, we establish the consistency, convergence rate, and asymptotic distribution of this change point estimator which is the maxima of a two-side Brownian motion with a drift. Since the performance of the change point estimator depends on a in use, we thus propose an algorithm for choosing an appropriate value of a, denoted by a_s which is also justified. Our simulation study shows that the change point estimate obtained by using a_s has a satisfactory performance. We also apply our method to a real dataset.
基金Chinese NSF grant 10231060the CAS Knowledge Innovation Program
文摘Separable nonlinear least squares problems are a special class of nonlinear least squares problems, where the objective functions are linear and nonlinear on different parts of variables. Such problems have broad applications in practice. Most existing algorithms for this kind of problems are derived from the variable projection method proposed by Golub and Pereyra, which utilizes the separability under a separate framework. However, the methods based on variable projection strategy would be invalid if there exist some constraints to the variables, as the real problems always do, even if the constraint is simply the ball constraint. We present a new algorithm which is based on a special approximation to the Hessian by noticing the fact that certain terms of the Hessian can be derived from the gradient. Our method maintains all the advantages of variable projection based methods, and moreover it can be combined with trust region methods easily and can be applied to general constrained separable nonlinear problems. Convergence analysis of our method is presented and numerical results are also reported.
文摘This paper deals with minimization problems in the calculus of variations set in a sequence of domains, the size of which tends to infinity in certain directions and such that the data only depend on the coordinates in the directions that remain constant. The authors study the asymptotic behavior of minimizers in various situations and show that they converge in an appropriate sense toward minimizers of a related energy functional in the constant directions.