This paper mainly concerns the mathematical justification of the asymptotic limit of the GrossPitaevskii equation with general initial data in the natural energy space over the whole space. We give a rigorous proof of...This paper mainly concerns the mathematical justification of the asymptotic limit of the GrossPitaevskii equation with general initial data in the natural energy space over the whole space. We give a rigorous proof of the convergence of the velocity fields defined through the solutions of the Gross-Pitaevskii equation to the strong solution of the incompressible Euler equations. Furthermore, we also obtain the rates of the convergence.展开更多
This paper is devoted to the derivation of macroscopic fluid dynamics from the Boltzmann mesoscopic dynamics of a binary mixture of hard-sphere gas particles.Specifically the hydrodynamics limit is performed by employ...This paper is devoted to the derivation of macroscopic fluid dynamics from the Boltzmann mesoscopic dynamics of a binary mixture of hard-sphere gas particles.Specifically the hydrodynamics limit is performed by employing different time and space scalings.The paper shows that,depending on the magnitude of the parameters which define the scaling,the macroscopic quantities(number density,mean velocity and local temperature)are solutions of the acoustic equation,the linear incompressible Euler equation and the incompressible Navier–Stokes equation.The derivation is formally tackled by the recent moment method proposed by[C.Bardos,et al.,J.Stat.Phys.63(1991)323]and the results generalize the analysis performed in[C.Bianca,et al.,Commun.Nonlinear Sci.Numer.Simulat.29(2015)240].展开更多
This paper presents a conceptual exploration that draws an intriguing parallelbetween a hypothetical travel scenario and the principles of special relativity. The scenario involves a traveler who reduces their speed b...This paper presents a conceptual exploration that draws an intriguing parallelbetween a hypothetical travel scenario and the principles of special relativity. The scenario involves a traveler who reduces their speed by an amount proportional to the distance traveled. Despite initially traveling at a high speed towards a given destination, the continual reduction in speed results in an asymptotic approach to the goal, analogous to the unattainable speed of light in relativity. Mathematically, the scenario is expressed through the Harmonic Series, demonstrating that the total travel time increases without bound, making the destination theoretically unreachable within a finite timeframe. This exploration mirrors the relativistic velocity addition and time dilation effects, providing a compelling analogy for understanding asymptotic limits. By highlighting the profound implications of diminishing returns and unattainable goals, this paper aims to stimulate further discussion and exploration of these fascinating parallels.展开更多
Let {Xn,n ≥ 1} be a sequence of arbitrary continuous random variables,we introduce the notion of limit asymptotic logarithm likelihood ratio r(ω),as a measure of dissimilarity between probability measure P and ref...Let {Xn,n ≥ 1} be a sequence of arbitrary continuous random variables,we introduce the notion of limit asymptotic logarithm likelihood ratio r(ω),as a measure of dissimilarity between probability measure P and reference measure Q.We get some strong deviation theorems for the partial sums of arbitrary continuous random variables under Chung-Teicher's type conditions[6-7].展开更多
This paper studies the incompressible limit and stability of global strong solutions to the threedimensional full compressible Navier-Stokes equations, where the initial data satisfy the "well-prepared" cond...This paper studies the incompressible limit and stability of global strong solutions to the threedimensional full compressible Navier-Stokes equations, where the initial data satisfy the "well-prepared" conditions and the velocity field and temperature enjoy the slip boundary condition and convective boundary condition, respectively. The uniform estimates with respect to both the Mach number ∈(0, ∈] and time t ∈ [0, ∞) are established by deriving a differential inequality with decay property, where ∈∈(0, 1] is a constant.As the Mach number vanishes, the global solution to full compressible Navier-Stokes equations converges to the one of isentropic incompressible Navier-Stokes equations in t ∈ [0, +∞). Moreover, we prove the exponentially asymptotic stability for the global solutions of both the compressible system and its limiting incompressible system.展开更多
The combined quasi-neutral and non-relativistic limit of compressible Navier-Stokes-Maxwell equations for plasmas is studied.For well-prepared initial data,it is shown that the smooth solution of compressible Navier-S...The combined quasi-neutral and non-relativistic limit of compressible Navier-Stokes-Maxwell equations for plasmas is studied.For well-prepared initial data,it is shown that the smooth solution of compressible Navier-Stokes-Maxwell equations converges to the smooth solution of incompressible Navier-Stokes equations by introducing new modulated energy functional.展开更多
Define the incremental fractional Brownian field with parameter H ∈ (0, 1) by ZH(τ, s) = BH(s-+τ) - BH(S), where BH(s) is a fractional Brownian motion with Hurst parameter H ∈ (0, 1). We firstly deriv...Define the incremental fractional Brownian field with parameter H ∈ (0, 1) by ZH(τ, s) = BH(s-+τ) - BH(S), where BH(s) is a fractional Brownian motion with Hurst parameter H ∈ (0, 1). We firstly derive the exact tail asymptoties for the maximum MH*(T) = max(τ,s)∈[a,b]×[0,T] ZH(τ, s)/τH of the standardised fractional Brownian motion field, with any fixed 0 〈 a 〈 b 〈 ∞ and T 〉 0; and we, furthermore, extend the obtained result to the ease that T is a positive random variable independent of {BH(s), s ≥ 0}. As a by-product, we obtain the Gumbel limit law for MH*r(T) as T →∞.展开更多
基金supported by National Natural Science Foundation of China(Grant No.11271184)China Scholarship Council,the Priority Academic Program Development of Jiangsu Higher Education Institutions,the Tsz-Tza Foundation,and Ministry of Science and Technology(Grant No.104-2628-M-006-003-MY4)
文摘This paper mainly concerns the mathematical justification of the asymptotic limit of the GrossPitaevskii equation with general initial data in the natural energy space over the whole space. We give a rigorous proof of the convergence of the velocity fields defined through the solutions of the Gross-Pitaevskii equation to the strong solution of the incompressible Euler equations. Furthermore, we also obtain the rates of the convergence.
文摘This paper is devoted to the derivation of macroscopic fluid dynamics from the Boltzmann mesoscopic dynamics of a binary mixture of hard-sphere gas particles.Specifically the hydrodynamics limit is performed by employing different time and space scalings.The paper shows that,depending on the magnitude of the parameters which define the scaling,the macroscopic quantities(number density,mean velocity and local temperature)are solutions of the acoustic equation,the linear incompressible Euler equation and the incompressible Navier–Stokes equation.The derivation is formally tackled by the recent moment method proposed by[C.Bardos,et al.,J.Stat.Phys.63(1991)323]and the results generalize the analysis performed in[C.Bianca,et al.,Commun.Nonlinear Sci.Numer.Simulat.29(2015)240].
文摘This paper presents a conceptual exploration that draws an intriguing parallelbetween a hypothetical travel scenario and the principles of special relativity. The scenario involves a traveler who reduces their speed by an amount proportional to the distance traveled. Despite initially traveling at a high speed towards a given destination, the continual reduction in speed results in an asymptotic approach to the goal, analogous to the unattainable speed of light in relativity. Mathematically, the scenario is expressed through the Harmonic Series, demonstrating that the total travel time increases without bound, making the destination theoretically unreachable within a finite timeframe. This exploration mirrors the relativistic velocity addition and time dilation effects, providing a compelling analogy for understanding asymptotic limits. By highlighting the profound implications of diminishing returns and unattainable goals, this paper aims to stimulate further discussion and exploration of these fascinating parallels.
基金Supported by Anhui High Education Research(2006Kj246B)
文摘Let {Xn,n ≥ 1} be a sequence of arbitrary continuous random variables,we introduce the notion of limit asymptotic logarithm likelihood ratio r(ω),as a measure of dissimilarity between probability measure P and reference measure Q.We get some strong deviation theorems for the partial sums of arbitrary continuous random variables under Chung-Teicher's type conditions[6-7].
基金supported by National Natural Science Foundation of China (Grant No. 11471334)Program for New Century Excellent Talents in University (Grant No. NCET-12-0085)
文摘This paper studies the incompressible limit and stability of global strong solutions to the threedimensional full compressible Navier-Stokes equations, where the initial data satisfy the "well-prepared" conditions and the velocity field and temperature enjoy the slip boundary condition and convective boundary condition, respectively. The uniform estimates with respect to both the Mach number ∈(0, ∈] and time t ∈ [0, ∞) are established by deriving a differential inequality with decay property, where ∈∈(0, 1] is a constant.As the Mach number vanishes, the global solution to full compressible Navier-Stokes equations converges to the one of isentropic incompressible Navier-Stokes equations in t ∈ [0, +∞). Moreover, we prove the exponentially asymptotic stability for the global solutions of both the compressible system and its limiting incompressible system.
基金supported by the Joint Funds of National Natural Science Foundation of China(Grant No.U1204103)China Postdoctoral Science Foundation Funded Project(Grant No.2013M530032)the Science and Technology Research Projects of Education Department of Henan Province(Grant No.13A110731)
文摘The combined quasi-neutral and non-relativistic limit of compressible Navier-Stokes-Maxwell equations for plasmas is studied.For well-prepared initial data,it is shown that the smooth solution of compressible Navier-Stokes-Maxwell equations converges to the smooth solution of incompressible Navier-Stokes equations by introducing new modulated energy functional.
基金supported by National Natural Science Foundation of China(Grant Nos.11326175 and 71471090)Natural Science Foundation of Zhejiang Province of China(Grant No.LQ14A010012)+2 种基金Research Start-up Foundation of Jiaxing University(Grant No.70512021)China Postdoctoral Science Foundation(Grant No.2014T70449)Natural Science Foundation of Jiangsu Province of China(Grant No.BK20131339)
文摘Define the incremental fractional Brownian field with parameter H ∈ (0, 1) by ZH(τ, s) = BH(s-+τ) - BH(S), where BH(s) is a fractional Brownian motion with Hurst parameter H ∈ (0, 1). We firstly derive the exact tail asymptoties for the maximum MH*(T) = max(τ,s)∈[a,b]×[0,T] ZH(τ, s)/τH of the standardised fractional Brownian motion field, with any fixed 0 〈 a 〈 b 〈 ∞ and T 〉 0; and we, furthermore, extend the obtained result to the ease that T is a positive random variable independent of {BH(s), s ≥ 0}. As a by-product, we obtain the Gumbel limit law for MH*r(T) as T →∞.