In this paper, the asynchronous versions of classical iterative methods for solving linear systems of equations are considered. Sufficient conditions for convergence of asynchronous relaxed processes are given for H-m...In this paper, the asynchronous versions of classical iterative methods for solving linear systems of equations are considered. Sufficient conditions for convergence of asynchronous relaxed processes are given for H-matrix by which nor only the requirements of [3] on coefficient matrix are lowered, but also a larger region of convergence than that in [3] is obtained.展开更多
Presents a study of the numerical behaviors of the relaxed asynchronous multisplitting methods for linear complementarity problems by solving typical problems from practical applications on a real multiprocessor syste...Presents a study of the numerical behaviors of the relaxed asynchronous multisplitting methods for linear complementarity problems by solving typical problems from practical applications on a real multiprocessor system. Description of the tested problems and computing environment used in the computations; Description of the asynchronous multisplitting unsymmetric accelerated overrelaxation method; Discussion of results.展开更多
This paper proposes a class of asynchronous block iterative methods for solving large scale nonlinear equations F(x)=0 and proves local convergence. This method splits F into p blocks, then does the asynch...This paper proposes a class of asynchronous block iterative methods for solving large scale nonlinear equations F(x)=0 and proves local convergence. This method splits F into p blocks, then does the asynchronous parallel iteration on the p multiprocessor with shared memory. Because each processor need only solve equations with a low dimension and there is no synchronous waiting time, the parallel efficiency can be increased. Finally, we give the results of the numerical test of three kinds of Newton like asynchronous block iteration methods which run well on a multiprocessor system. These results show that the parallel efficiency is very high.展开更多
文摘In this paper, the asynchronous versions of classical iterative methods for solving linear systems of equations are considered. Sufficient conditions for convergence of asynchronous relaxed processes are given for H-matrix by which nor only the requirements of [3] on coefficient matrix are lowered, but also a larger region of convergence than that in [3] is obtained.
基金the Special Funds for Major State Basic Research Projects G1999032803Supported by the National Natural Science Foundation of China (19601036).
文摘Presents a study of the numerical behaviors of the relaxed asynchronous multisplitting methods for linear complementarity problems by solving typical problems from practical applications on a real multiprocessor system. Description of the tested problems and computing environment used in the computations; Description of the asynchronous multisplitting unsymmetric accelerated overrelaxation method; Discussion of results.
基金Supported by the National Natural Scie-nce Foundation of China
文摘This paper proposes a class of asynchronous block iterative methods for solving large scale nonlinear equations F(x)=0 and proves local convergence. This method splits F into p blocks, then does the asynchronous parallel iteration on the p multiprocessor with shared memory. Because each processor need only solve equations with a low dimension and there is no synchronous waiting time, the parallel efficiency can be increased. Finally, we give the results of the numerical test of three kinds of Newton like asynchronous block iteration methods which run well on a multiprocessor system. These results show that the parallel efficiency is very high.