期刊文献+
共找到651篇文章
< 1 2 33 >
每页显示 20 50 100
Complementary-Label Adversarial Domain Adaptation Fault Diagnosis Network under Time-Varying Rotational Speed and Weakly-Supervised Conditions
1
作者 Siyuan Liu Jinying Huang +2 位作者 Jiancheng Ma Licheng Jing Yuxuan Wang 《Computers, Materials & Continua》 SCIE EI 2024年第4期761-777,共17页
Recent research in cross-domain intelligence fault diagnosis of machinery still has some problems,such as relatively ideal speed conditions and sample conditions.In engineering practice,the rotational speed of the mac... Recent research in cross-domain intelligence fault diagnosis of machinery still has some problems,such as relatively ideal speed conditions and sample conditions.In engineering practice,the rotational speed of the machine is often transient and time-varying,which makes the sample annotation increasingly expensive.Meanwhile,the number of samples collected from different health states is often unbalanced.To deal with the above challenges,a complementary-label(CL)adversarial domain adaptation fault diagnosis network(CLADAN)is proposed under time-varying rotational speed and weakly-supervised conditions.In the weakly supervised learning condition,machine prior information is used for sample annotation via cost-friendly complementary label learning.A diagnosticmodel learning strategywith discretized category probabilities is designed to avoidmulti-peak distribution of prediction results.In adversarial training process,we developed virtual adversarial regularization(VAR)strategy,which further enhances the robustness of the model by adding adversarial perturbations in the target domain.Comparative experiments on two case studies validated the superior performance of the proposed method. 展开更多
关键词 Time-varying rotational speed weakly-supervised fault diagnosis domain adaptation
下载PDF
Research on Instantaneous Angular Speed Signal Separation Method for Planetary Gear Fault Diagnosis
2
作者 Xinkai Song Yibao Zhang Shuo Zhang 《Modern Mechanical Engineering》 2024年第2期39-50,共12页
Planetary gear train is a critical transmission component in large equipment such as helicopters and wind turbines. Conducting damage perception of planetary gear trains is of great significance for the safe operation... Planetary gear train is a critical transmission component in large equipment such as helicopters and wind turbines. Conducting damage perception of planetary gear trains is of great significance for the safe operation of equipment. Existing methods for damage perception of planetary gear trains mainly rely on linear vibration analysis. However, these methods based on linear vibration signal analysis face challenges such as rich vibration sources, complex signal coupling and modulation mechanisms, significant influence of transmission paths, and difficulties in separating damage information. This paper proposes a method for separating instantaneous angular speed (IAS) signals for planetary gear fault diagnosis. Firstly, this method obtains encoder pulse signals through a built-in encoder. Based on this, it calculates the IAS signals using the Hilbert transform, and obtains the time-domain synchronous average signal of the IAS of the planetary gear through time-domain synchronous averaging technology, thus realizing the fault diagnosis of the planetary gear train. Experimental results validate the effectiveness of the calculated IAS signals, demonstrating that the time-domain synchronous averaging technology can highlight impact characteristics, effectively separate and extract fault impacts, greatly reduce the testing cost of experiments, and provide an effective tool for the fault diagnosis of planetary gear trains. 展开更多
关键词 Planetary Gear Train Encoder Signal Instantaneous Angular speed Signal Time-Domain Synchronous Averaging Fault diagnosis
下载PDF
Research on Rubbing-fault Diagnosis System in High-speed Rotor based on LabVIEW
3
作者 WEI Xie-ben CHEN Shu-qin SUN Pei-ming 《International Journal of Plant Engineering and Management》 2018年第1期59-64,共6页
The rubbing between rotors and determiners is the common mechanic vibration fault in the operation of rotation machinery. During the operation of equipment, in order to meet the demand of high speed and efficiency of ... The rubbing between rotors and determiners is the common mechanic vibration fault in the operation of rotation machinery. During the operation of equipment, in order to meet the demand of high speed and efficiency of machinery, the gap between the active and passive parts of the rotor system become smaller, which results in the common rubbing fault of rotors and stators. This essay studies the fault diagnosis of high speed rotors based on invented instrument and shows the measurement and research of the signals of rubbing failure of high speed rotors. The research introduces the designed software and hardware which are experimented and testified on Bentley rotor experiment platform. The system has theoretical and applicative meaning in practical projects. 展开更多
关键词 high-speed rotor LABVIEW RUBBING fault diagnosis
下载PDF
基于DFD-DBSCAN的高速列车电池组多故障诊断方法
4
作者 向超群 席振 +3 位作者 左明洁 毕福亮 成庶 于天剑 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2024年第7期2980-2988,共9页
高速列车电池作为备用电源,被广泛应用于辅助供电系统以维持高速列车控制系统的正常运转,其可靠性涉及行车安全。列车频繁起停、频繁加减速以及震动等多种复杂运行环境易导致电池单体故障和连接故障。为了保证高速列车的安全运行,高速... 高速列车电池作为备用电源,被广泛应用于辅助供电系统以维持高速列车控制系统的正常运转,其可靠性涉及行车安全。列车频繁起停、频繁加减速以及震动等多种复杂运行环境易导致电池单体故障和连接故障。为了保证高速列车的安全运行,高速列车电池组的状态检测与多故障诊断研究备受关注。目前,针对高速列车电池组的多故障诊断方法的研究尚属空白,提出一种基于改进离散弗雷歇距离(Discrete Fréchet Distance, DFD)和自适应密度聚类(Density-Based Spatial Clustering of Applications with Noise, DBSCAN)的高速列车电池组的实时多故障诊断方法,以准确识别电池组的连接故障和单体故障。以高速列车电池作为研究对象,通过设计适用于高速列车电池组的电压交叉测量方法,使得电池电压和连接板电压与不同的电压传感器相关联,并通过DFD算法对电池组的故障特征进行提取,将电压偏移率与DFD共同作为故障诊断模型的参数输入以提高算法的鲁棒性与可靠性,接着引入DBSCAN算法自动对故障诊断并定位。为了保证算法的实时性,利用基于滑动窗口的遗忘机制实时地对采样数据进行诊断。通过实验对所提出的方法进行验证,结果表明该方法可及时有效地诊断电池组的单体故障与连接故障并准确定位,弥补了高速列车电池组多故障诊断方法研究的缺失,对提高轨道列车的行车安全具有工程实用意义。 展开更多
关键词 高速列车 电池组 故障诊断 弗雷歇距离 DBSCAN算法
下载PDF
基于MDS和改进SSA-SVM的高速铁路道岔故障诊断方法研究
5
作者 王彦快 米根锁 +2 位作者 孔得盛 杨建刚 张玉 《铁道学报》 EI CAS CSCD 北大核心 2024年第1期81-90,共10页
针对高速铁路道岔设备故障频繁,现场维修工作量大等问题,提出基于多维尺度缩放法(MDS)和改进麻雀搜索算法(SSA)优化支持向量机(SVM)的高速铁路道岔故障诊断模型。首先以ZDJ9道岔转换功率曲线为研究对象,总结现场典型道岔故障类型及故障... 针对高速铁路道岔设备故障频繁,现场维修工作量大等问题,提出基于多维尺度缩放法(MDS)和改进麻雀搜索算法(SSA)优化支持向量机(SVM)的高速铁路道岔故障诊断模型。首先以ZDJ9道岔转换功率曲线为研究对象,总结现场典型道岔故障类型及故障原因,分别提取道岔功率曲线的时域、频域特征指标以及小波包能量熵,组成特征指标向量;其次采用MDS方法进行多维特征指标的降维优化,建立道岔故障特征指标样本数据库;最后利用改进Circle混沌映射初始化种群,并通过自适应t分布增强麻雀种群的多样性,再以改进SSA算法优化SVM模型中的惩罚因子和核函数方差2个关键参数,构建改进SSA-SVM的道岔故障诊断模型。故障诊断结果表明,本模型的故障诊断正确率高达96.25%,诊断效果优于其他方法,可以为道岔设备的故障维修提供理论依据。 展开更多
关键词 高速铁路道岔 故障诊断 改进麻雀搜索算法-支持向量机 Circle混沌映射 自适应t分布 小波包能量熵 多维尺度缩放法
下载PDF
基于信息图-MCKD的高速列车牵引电机轴承故障诊断算法研究
6
作者 杨岗 杨惠心 张东兴 《铁道车辆》 2024年第4期140-148,共9页
高速列车牵引电机轴承故障特征微弱且干扰噪声强,为解决电机轴承故障特征难以提取的问题,文章提出了一种基于谱负熵信息图与最大相关峭度解卷积(MCKD)的电机轴承故障诊断方法。首先,对故障轴承振动信号进行基于谱负熵的信息图处理,确定... 高速列车牵引电机轴承故障特征微弱且干扰噪声强,为解决电机轴承故障特征难以提取的问题,文章提出了一种基于谱负熵信息图与最大相关峭度解卷积(MCKD)的电机轴承故障诊断方法。首先,对故障轴承振动信号进行基于谱负熵的信息图处理,确定最佳中心频带和带宽,从而对轴承振动信号进行带通滤波;然后,对滤波后的信号采用MCKD方法进行故障特征增强;最后,对故障特征增强后的信号进行包络分析,识别出电机轴承的故障特征。经仿真信号和台架试验数据验证,结果表明,信息图-MCKD方法对牵引电机轴承故障诊断具有良好效果。 展开更多
关键词 高速列车 牵引电机轴承 故障诊断 谱负熵 信息图 MCKD
下载PDF
An improved resampling algorithm for rolling element bearing fault diagnosis under variable rotational speeds
7
作者 赵德尊 李建勇 +1 位作者 程卫东 温伟刚 《Journal of Southeast University(English Edition)》 EI CAS 2017年第2期150-158,共9页
In order to address the issues of traditional resampling algorithms involving computational accuracy and efficiency in rolling element bearing fault diagnosis, an equal division impulse-based(EDI-based) resampling a... In order to address the issues of traditional resampling algorithms involving computational accuracy and efficiency in rolling element bearing fault diagnosis, an equal division impulse-based(EDI-based) resampling algorithm is proposed. First, the time marks of every rising edge of the rotating speed pulse and the corresponding amplitudes of faulty bearing vibration signal are determined. Then, every adjacent the rotating pulse is divided equally, and the time marks in every adjacent rotating speed pulses and the corresponding amplitudes of vibration signal are obtained by the interpolation algorithm. Finally, all the time marks and the corresponding amplitudes of vibration signal are arranged and the time marks are transformed into the angle domain to obtain the resampling signal. Speed-up and speed-down faulty bearing signals are employed to verify the validity of the proposed method, and experimental results show that the proposed method is effective for diagnosing faulty bearings. Furthermore, the traditional order tracking techniques are applied to the experimental bearing signals, and the results show that the proposed method produces higher accurate outcomes in less computation time. 展开更多
关键词 rolling element bearing fault diagnosis variable rotational speed equal division impulse-based resampling
下载PDF
基于URP-ANCNN的变转速齿轮箱智能故障诊断方法 被引量:1
8
作者 陈向民 舒文伊 +2 位作者 韩梦茹 张亢 李博 《噪声与振动控制》 CSCD 北大核心 2024年第2期129-135,共7页
由于齿轮箱振动信号在变转速工况下出现的调频、调幅等现象,使得信号征兆与故障模式之间的映射关系变得复杂,导致齿轮箱故障难以精确诊断。鉴于深度神经网络在自动提取数据特征和分类上的优势,提出一种基于无阈值递归图编码(Un-threshol... 由于齿轮箱振动信号在变转速工况下出现的调频、调幅等现象,使得信号征兆与故障模式之间的映射关系变得复杂,导致齿轮箱故障难以精确诊断。鉴于深度神经网络在自动提取数据特征和分类上的优势,提出一种基于无阈值递归图编码(Un-threshold Recurrence Plot,URP)和自适应归一化卷积神经网络(Adaptive Normalized Convolutional Neural Network,ANCNN)的变转速工况齿轮箱故障诊断方法。该方法先使用快速傅里叶变换(Fast Fourier Transform,FFT)将时域信号转化为频域信号,再利用URP编码将得到的频域信号转化为二维递归图,并提取图像特征输入到ANCNN模型。在ANCNN模型中,采用批量归一化算法消除因转速变化引起的特征分布差异,同时处理转速波动下产生的频移和调制特性,并使用遗传算法自动调整该网络模型的超参数,以提高该网络的整体性能。采用转速波动的齿轮箱试验数据对该方法进行验证,实验结果表明,该方法能够克服转速波动的影响,成功实现对不同齿轮故障的准确识别。 展开更多
关键词 故障诊断 卷积神经网络 无阈值递归图 批量归一化 变转速工况 齿轮箱
下载PDF
Gearbox Fault Diagnosis using Adaptive Zero Phase Time-varying Filter Based on Multi-scale Chirplet Sparse Signal Decomposition 被引量:16
9
作者 WU Chunyan LIU Jian +2 位作者 PENG Fuqiang YU Dejie LI Rong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第4期831-838,共8页
When used for separating multi-component non-stationary signals, the adaptive time-varying filter(ATF) based on multi-scale chirplet sparse signal decomposition(MCSSD) generates phase shift and signal distortion. To o... When used for separating multi-component non-stationary signals, the adaptive time-varying filter(ATF) based on multi-scale chirplet sparse signal decomposition(MCSSD) generates phase shift and signal distortion. To overcome this drawback, the zero phase filter is introduced to the mentioned filter, and a fault diagnosis method for speed-changing gearbox is proposed. Firstly, the gear meshing frequency of each gearbox is estimated by chirplet path pursuit. Then, according to the estimated gear meshing frequencies, an adaptive zero phase time-varying filter(AZPTF) is designed to filter the original signal. Finally, the basis for fault diagnosis is acquired by the envelope order analysis to the filtered signal. The signal consisting of two time-varying amplitude modulation and frequency modulation(AM-FM) signals is respectively analyzed by ATF and AZPTF based on MCSSD. The simulation results show the variances between the original signals and the filtered signals yielded by AZPTF based on MCSSD are 13.67 and 41.14, which are far less than variances (323.45 and 482.86) between the original signals and the filtered signals obtained by ATF based on MCSSD. The experiment results on the vibration signals of gearboxes indicate that the vibration signals of the two speed-changing gearboxes installed on one foundation bed can be separated by AZPTF effectively. Based on the demodulation information of the vibration signal of each gearbox, the fault diagnosis can be implemented. Both simulation and experiment examples prove that the proposed filter can extract a mono-component time-varying AM-FM signal from the multi-component time-varying AM-FM signal without distortion. 展开更多
关键词 zero phase time-varying filter MULTI-SCALE CHIRPLET sparse signal decomposition speed-changing gearbox fault diagnosis
下载PDF
基于Inception-LSTM的退火窑辊道系统轴承故障诊断 被引量:1
10
作者 周康渠 刘田创 +1 位作者 辛玉 谢文南 《噪声与振动控制》 CSCD 北大核心 2024年第1期174-180,共7页
玻璃生产线退火窑辊道系统轴承运行状态显著影响玻璃品质和生产效率,实时监测各轴承运行状态对确保退火窑系统的平稳运行具有重要意义,提出结合Inception模块和长短期神经网络(Long Short-term Memory,LSTM)的迁移诊断方法,对退火窑辊... 玻璃生产线退火窑辊道系统轴承运行状态显著影响玻璃品质和生产效率,实时监测各轴承运行状态对确保退火窑系统的平稳运行具有重要意义,提出结合Inception模块和长短期神经网络(Long Short-term Memory,LSTM)的迁移诊断方法,对退火窑辊道系统中的辊道轴承和通轴轴承运行状态进行监测、诊断。首先,使用集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)对轴承信号进行分解和重构降噪,并利用直方均衡化增强重构信号小波时频图的聚集性。然后,针对样本充足的辊道轴承,建立Inception-LSTM网络,提取多尺度特征并学习其中的时间依赖关系,实现状态诊断。再次,针对转速不同且样本量少的通轴轴承,以辊道轴承信号为源域,以通轴轴承信号为目标域,以Inception-LSTM网络为基础,使用多核最大均值差异(Multi-kernel Maximum Mean Discrepancies,MKMMD)减小分布差异,实现故障样本不平衡条件下的跨转速域不变特征提取和迁移诊断。最后,利用实验数据和实测数据验证本算法的有效性,结果表明,该方法能有效诊断出退火窑辊道系统轴承故障,且具有较高的准确率。 展开更多
关键词 故障诊断 辊道轴承 通轴轴承 样本不平衡 跨转速 MK-MMD
下载PDF
Fuzzy-Model-Based Finite Frequency Fault Detection Filtering Design for Two-Dimensional Nonlinear Systems
11
作者 Meng Wang Huaicheng Yan +1 位作者 Jianbin Qiu Wenqiang Ji 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第10期2099-2110,共12页
This article studies the fault detection filtering design problem for Roesser type two-dimensional(2-D)nonlinear systems described by uncertain 2-D Takagi-Sugeno(T-S)fuzzy models.Firstly,fuzzy Lyapunov functions are c... This article studies the fault detection filtering design problem for Roesser type two-dimensional(2-D)nonlinear systems described by uncertain 2-D Takagi-Sugeno(T-S)fuzzy models.Firstly,fuzzy Lyapunov functions are constructed and the 2-D Fourier transform is exploited,based on which a finite frequency fault detection filtering design method is proposed such that a residual signal is generated with robustness to external disturbances and sensitivity to faults.It has been shown that the utilization of available frequency spectrum information of faults and disturbances makes the proposed filtering design method more general and less conservative compared with a conventional nonfrequency based filtering design approach.Then,with the proposed evaluation function and its threshold,a novel mixed finite frequency H_(∞)/H_(-)fault detection algorithm is developed,based on which the fault can be immediately detected once the evaluation function exceeds the threshold.Finally,it is verified with simulation studies that the proposed method is effective and less conservative than conventional non-frequency and/or common Lyapunov function based filtering design methods. 展开更多
关键词 Fault diagnosis finite frequency specifications mixed H_(∞)/H_(-)performance two-dimensional nonlinear systems
下载PDF
Research on Feature Extraction Method for Low-Speed Reciprocating Bearings Based on Segmented Short Signal Modulation Signal Bispectrum Slicing
12
作者 Hao Zhang 《Open Journal of Applied Sciences》 2023年第12期2306-2319,共14页
Bearing condition monitoring and fault diagnosis (CMFD) can investigate bearing faults in the early stages, preventing the subsequent impacts of machine bearing failures effectively. CMFD for low-speed, non-continuous... Bearing condition monitoring and fault diagnosis (CMFD) can investigate bearing faults in the early stages, preventing the subsequent impacts of machine bearing failures effectively. CMFD for low-speed, non-continuous operation bearings, such as yaw bearings and pitch bearings in wind turbines, and rotating support bearings in space launch towers, presents more challenges compared to continuous rolling bearings. Firstly, these bearings have very slow speeds, resulting in weak collected fault signals that are heavily masked by severe noise interference. Secondly, their limited rotational angles during operation lead to a restricted number of fault signals. Lastly, the interference from deceleration and direction-changing impact signals significantly affects fault impact signals. To address these challenges, this paper proposes a method for extracting fault features in low-speed reciprocating bearings based on short signal segmentation and modulation signal bispectrum (MSB) slicing. This method initially separates short signals corresponding to individual cycles from the vibration signals based on encoder signals. Subsequently, MSB analysis is performed on each short signal to generate MSB carrier-slice spectra. The optimal carrier frequency and its corresponding modulation signal slice spectrum are determined based on the carrier-slice spectra. Finally, the MSB modulation signal slice spectra of the short signal set are averaged to obtain the overall average feature of the sliced spectra. 展开更多
关键词 Fault diagnosis The Modulation Signal Bispectrum Short Signal Low-speed Reciprocating Bearings Slewing Bearing
下载PDF
ANN Model and Learning Algorithm in Fault Diagnosis for FMS
13
作者 史天运 王信义 +1 位作者 张之敬 朱小燕 《Journal of Beijing Institute of Technology》 EI CAS 1997年第4期45-53,共9页
The fault diagnosis model for FMS based on multi layer feedforward neural networks was discussed An improved BP algorithm,the tactic of initial value selection based on genetic algorithm and the method of network st... The fault diagnosis model for FMS based on multi layer feedforward neural networks was discussed An improved BP algorithm,the tactic of initial value selection based on genetic algorithm and the method of network structure optimization were presented for training this model ANN(artificial neural network)fault diagnosis model for the robot in FMS was made by the new algorithm The result is superior to the rtaditional algorithm 展开更多
关键词 fault diagnosis for FMS artificial neural network(ANN) improved BP algorithm optimization genetic algorithm learning speed
下载PDF
基于Inception V3-BiLSTM模型的滚动轴承故障诊断方法 被引量:5
14
作者 刘磊 李舜酩 +2 位作者 陆建涛 王艳丰 滕光蓉 《轴承》 北大核心 2023年第8期65-72,共8页
针对传统深度学习模型对滚动轴承故障诊断效果不佳以及计算效率低等问题,提出了一种基于Inception V3模型和双向长短时记忆网络相结合的滚动轴承故障诊断方法(Inception V3-BiLSTM),加入自注意力机制并采用全局平均池化取代传统的全连接... 针对传统深度学习模型对滚动轴承故障诊断效果不佳以及计算效率低等问题,提出了一种基于Inception V3模型和双向长短时记忆网络相结合的滚动轴承故障诊断方法(Inception V3-BiLSTM),加入自注意力机制并采用全局平均池化取代传统的全连接层,实现滚动轴承的智能、高效诊断。使用凯斯西储大学以及渥太华大学轴承数据集的试验结果表明:与传统深度学习方法相比,Inception V3-BiLSTM能够实现同负载下多故障类别和时变转速工况下单一及复合故障的智能诊断,且具有更高的诊断精度和更快的诊断速率。 展开更多
关键词 滚动轴承 故障诊断 深度学习 Inception模型 短时记忆 神经网络 自注意力 变速
下载PDF
基于COT-NGO-VMD与LSTM的变转速滚动轴承故障诊断 被引量:2
15
作者 郗涛 胡明橙 王莉静 《组合机床与自动化加工技术》 北大核心 2023年第12期188-192,共5页
针对滚动轴承在混合变转速工况下故障特征难以提取和故障诊断识别不准确的问题,提出了一种基于计算阶次跟踪(COT)-北方苍鹰优化算法(NGO)-变分模态分解(VMD)的故障特征提取与长短时记忆神经网络(LSTM)相融合的变转速滚动轴承故障诊断模... 针对滚动轴承在混合变转速工况下故障特征难以提取和故障诊断识别不准确的问题,提出了一种基于计算阶次跟踪(COT)-北方苍鹰优化算法(NGO)-变分模态分解(VMD)的故障特征提取与长短时记忆神经网络(LSTM)相融合的变转速滚动轴承故障诊断模型。首先,通过COT算法将非平稳时域信号转为平稳角域信号;然后,通过NGO算法对VMD的模态个数K与惩罚因子α进行优化;其次,以局部极小包络熵为目标筛选VMD分解的最优分量并提取低阶阶次谱值作为故障特征向量;最后,采用uOttawa轴承数据集,把特征向量输入到LSTM神经网络中进行训练与测试。结果表明,在混合多种工况条件下,此模型的准确率达到97.78%,验证了本模型的有效性。 展开更多
关键词 变转速滚动轴承 故障诊断 阶次跟踪 变分模态分解 长短时记忆网络
下载PDF
Comprehensive Overview on Computational Intelligence Techniques for Machinery Condition Monitoring and Fault Diagnosis 被引量:18
16
作者 Wan Zhang Min-Ping Jia +1 位作者 Lin Zhu Xiao-An Yan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第4期782-795,共14页
Computational intelligence is one of the most powerful data processing tools to solve complex nonlinear problems, and thus plays a significant role in intelligent fault diagnosis and prediction. However, only few com-... Computational intelligence is one of the most powerful data processing tools to solve complex nonlinear problems, and thus plays a significant role in intelligent fault diagnosis and prediction. However, only few com- prehensive reviews have summarized the ongoing efforts of computational intelligence in machinery condition moni- toring and fault diagnosis. The recent research and devel- opment of computational intelligence techniques in fault diagnosis, prediction and optimal sensor placement are reviewed. The advantages and limitations of computational intelligence techniques in practical applications are dis- cussed. The characteristics of different algorithms are compared, and application situations of these methods are summarized. Computational intelligence methods need to be further studied in deep understanding algorithm mech- anism, improving algorithm efficiency and enhancing engineering application. This review may be considered as a useful guidance for researchers in selecting a suit- able method for a specific situation and pointing out potential research directions. 展开更多
关键词 Computational intelligence Machinerycondition monitoring Fault diagnosis Neural networkFuzzy logic Support vector machine - Evolutionaryalgorithms
下载PDF
Fault Diagnosis of Overflow Valve Based on Trispectrum
17
作者 Wenbing Wu 《World Journal of Engineering and Technology》 2020年第4期765-773,共9页
The high-order spectrum can effectively remove Gaussian noise. The three-spectrum and its slices represent random signals from a higher probability structure. It can not only qualitatively describe the linearity and n... The high-order spectrum can effectively remove Gaussian noise. The three-spectrum and its slices represent random signals from a higher probability structure. It can not only qualitatively describe the linearity and nonlinearity of vibration signals closely related to mechanical failures, Gaussian and non-Gaussian Performance, and can greatly i</span><span style="font-family:Verdana;"></span><span style="font-family:"">mprove the accuracy of mechanical fault diagnosis. The two-dimensional slices of trispectrum in normal and fault states show different peak characteristics. 2-D wavelet multi-level decomposition can effectively compress 2-D array information. Least squares support vector machine can obtain the global optimum under limited samples, thus avoiding the local optimum problem, and has the advantage of reducing computational complexity. In this paper, 2-D wavelet multi-level decomposition is used to extract features of trispectrum 2-D slices, and input LSSVM to diagnose the fault of the pressure reducing valve, which has achieved good results. 展开更多
关键词 speed Control Valve Trispectrum Two-Dimensional Slice Two-Dimensional Wavelet Least Square Support Vector Machine Fault diagnosis
下载PDF
Stator Winding Turn Faults Diagnosis for Induction Motor by Immune Memory Dynamic Clonal Strategy Algorithm
18
作者 吴洪兵 楼佩煌 唐敦兵 《Journal of Donghua University(English Edition)》 EI CAS 2013年第4期276-281,共6页
Quick detection of a small initial fault is important for an induction motor to prevent a consequent large fault.The mathematical model with basic motor equations among voltages,currents,and fluxes is analyzed and the... Quick detection of a small initial fault is important for an induction motor to prevent a consequent large fault.The mathematical model with basic motor equations among voltages,currents,and fluxes is analyzed and the motor model equations are described.The fault related features are extracted.An immune memory dynamic clonal strategy(IMDCS)system is applied to detecting the stator faults of induction motor.Four features are obtained from the induction motor,and then these features are given to the IMDCS system.After the motor condition has been learned by the IMDCS system,the memory set obtained in the training stage can be used to detect any fault.The proposed method is experimentally implemented on the induction motor,and the experimental results show the applicability and effectiveness of the proposed method to the diagnosis of stator winding turn faults in induction motors. 展开更多
关键词 artificial immune system dynamic clonal strategy fault diagnosis stator winding motorCLC number:TH17Document code:AArticle ID:1672-5220(2013)04-0276-06
下载PDF
变转速下基于改进多阶概率方法的风电齿轮箱故障诊断研究
19
作者 刘长良 刘少康 +2 位作者 李洋 刘帅 武英杰 《仪器仪表学报》 EI CAS CSCD 北大核心 2024年第5期208-217,共10页
阶次跟踪是一种有效的解决变转速故障诊断问题的方法,其关键前提是存在转速信号作为参考。然而,由于强背景噪声和弱谐波关系的影响,现有转速估计方法的准确性和自适应性有待进一步提高。因此,提出一种融合多传感器信号的改进多阶概率方... 阶次跟踪是一种有效的解决变转速故障诊断问题的方法,其关键前提是存在转速信号作为参考。然而,由于强背景噪声和弱谐波关系的影响,现有转速估计方法的准确性和自适应性有待进一步提高。因此,提出一种融合多传感器信号的改进多阶概率方法(MOPA)用以估计瞬时转速。首先,依据不同传感器信号的基频统一性和主导分量差异性,通过时频图瞬时切片归一化融合的方式,构建具有强谐波关系的时频图;其次,为消除时变工况下时频图中横纵方向上的间歇恒频和短时宽频背景噪声,提出滑动消噪方法;最后,基于处理后的时频图执行MOPA,实现瞬时转速自动估计,结合阶次跟踪解决风电齿轮箱变转速故障诊断问题。经实测数据验证,改进MOPA估计的瞬时频率的准确性和自适应性均优于对方法,平均绝对百分比误差为0.56%,均小于对比方法的15.73%、13.99%和1.21%。结合阶次分析诊断了变转速下风电齿轮箱异常。 展开更多
关键词 变转速 故障诊断 风电齿轮箱 瞬时频率 阶次跟踪
下载PDF
基于自适应窗口与压缩幅值的瞬时转频估计
20
作者 王贡献 卢广浩 +1 位作者 胡志辉 付泽 《噪声与振动控制》 CSCD 北大核心 2024年第1期134-141,共8页
针对变转速工况下轴承信号的时频分布能量发散、噪声和谐波干扰强导致其转频难以获取的问题,提出一种基于自适应窗口和压缩幅值的瞬时转频估计方法。首先,通过自适应窗口在频率轴方向搜索出脊线窗口避免噪声和谐波的干扰;其次,在脊线窗... 针对变转速工况下轴承信号的时频分布能量发散、噪声和谐波干扰强导致其转频难以获取的问题,提出一种基于自适应窗口和压缩幅值的瞬时转频估计方法。首先,通过自适应窗口在频率轴方向搜索出脊线窗口避免噪声和谐波的干扰;其次,在脊线窗口内用压缩幅值方法集中发散的脊线能量;然后,用惩罚函数法提取脊线,实现转频的精确估计;最后,根据采用轴承实验台收集的数据验证了所提出方法的有效性和鲁棒性。结果表明,相比于传统方法,采用所提方法估计瞬时转动频率使误差降低约8%。 展开更多
关键词 故障诊断 脊线提取 滚动轴承 变转速 自适应窗口 转频估计 压缩幅值
下载PDF
上一页 1 2 33 下一页 到第
使用帮助 返回顶部