Potassium titanate (K4Ti3O8) was synthesized by the reaction between ilmenite and concentrated KOH solution in the atmosphere of nitrogen,still air,and oxygen,respectively.The obtained samples were systematically in...Potassium titanate (K4Ti3O8) was synthesized by the reaction between ilmenite and concentrated KOH solution in the atmosphere of nitrogen,still air,and oxygen,respectively.The obtained samples were systematically investigated by X-ray diffraction (XRD),inductively coupled plasma optical emission spectrometer (ICP-OES),and scanning electron microscopy (SEM).XRD results indicate that K4Ti3O8 have been synthesized in different atmospheres.The oxidizing atmosphere could enhance the conversion rate of Ti from ilmenite to K4Ti3O8,and Fe(II) is easily oxidized to trivalent iron Fe(III) during the reaction.Furthermore,SEM images show that the different atmospheres have significant effect on K4Ti3O8 crystal morphology and particle size.Well shaped K4Ti3O8 crystals are obtained in nonoxidizing atmosphere.展开更多
In the past, the planetary radiation balance served to quantify the atmospheric greenhouse effect by the difference between the globally averaged near-surface temperature of and the respective effective radiation temp...In the past, the planetary radiation balance served to quantify the atmospheric greenhouse effect by the difference between the globally averaged near-surface temperature of and the respective effective radiation temperature of the Earth without atmosphere of resulting in . Since such a “thought experiment” prohibits any rigorous assessment of its results, this study considered the Moon as a testbed for the Earth in the absence of its atmosphere. Since the angular velocity of Moon’s rotation is 27.4 times slower than that of the Earth, the forcing method, the force-restore method, and a multilayer-force-restore method, used in climate modeling during the past four decades, were alternatively applied to address the influence of the angular velocity in determining the Moon’s globally averaged skin (or slab) temperature, . The multilayer-force-restore method always provides?the highest values for , followed by the force-restore method and the forcing method, but the differences are marginal. Assuming a solar albedo of , a relative emissivity , and a solar constant of and applying the multilayer-force-restore method yielded and for the Moon. Using the same values for α, ε, and S, but assuming the Earth’s angular velocity for the Moon yielded and quantifying the effect of the terrestrial atmosphere by . A sensitivity study for a solar albedo of commonly assumed for the Earth in the absence of its atmosphere yielded , , and . This means that the atmospheric effect would be more than twice as large as the aforementioned difference of 33 K. To generalize the findings, twelve synodic months (i.e., 354 Earth days) and 365 Earth days, where , a Sun-zenith-distance dependent solar albedo, and the variation of the solar radiation in dependence of the actual orbit position and the tilt angle of the corresponding rotation axis to the ecliptic were considered. The case of Moon’s true angular velocity yielded and . Whereas Earth’s 27.4 times higher angular velocity yielded , and . In both cases, the effective radiation temperature is ,?because the computed global albedo is . Thus, the effective radiation temperature yields flawed results when used for quantifying the atmospheric greenhouse effect.展开更多
The stability question of large-scale horizontal motion in the atmosphere under the effect of Rossby parameter is discussed in this paper by using the qualitative analysis theory of ordinary differential equations. Th...The stability question of large-scale horizontal motion in the atmosphere under the effect of Rossby parameter is discussed in this paper by using the qualitative analysis theory of ordinary differential equations. The following aspects are reviewed: The stability of large-scale horizontal motion in the atmosphere accords with the common inertial stability criterion when the effect of Rossby parameter is not considered (Yang, 1983), and that, on the other hand, the motion will bifurcate two times with the variation of absolute vorticity of basic Zephyr flow at the initial position under the effect of Rossby parameter. Furthermore, in the inertial stable region, if the effect of geostrophic deviation at the initial position is considered, the motion will not only bifurcate but also generate a catastrophe.展开更多
Atmospheric effects on interferometric synthetic aperture radar(InSAR) measurements are quantitatively studied based on a tandem pair of SAR data and a month-long continuous GPS tracking data obtained at six stations....Atmospheric effects on interferometric synthetic aperture radar(InSAR) measurements are quantitatively studied based on a tandem pair of SAR data and a month-long continuous GPS tracking data obtained at six stations. Differential atmospheric signals extracted from the SAR data for two selected areas show apparent power law characteristics. The RMS values of the signals are 2.04 and 3.66 rad respectively for the two areas. These differential delays can potentially cause in the two areas peak-to-peak deformation errors of 3.64 and 6.52cm, respectively, at the 95% confidence level and Gaussian distribution. The respective potential peak-to-peak DEM errors are 123 and 221 m. The GPS tropospheric total zenith delays estimate indicates that a peak-to-peak error of about 7.8cm can potentially be caused in a SAR interferogram with only 1 d interval at the 95% confidence level. The error increases to about 9.6cm for 10 d interval. The potential peak-to-peak DEM and deformation errors estimated from GPS total zenith delay measurements are however quite similar to those estimated from InSAR data. This provides us with a useful tool to pre-estimate the potential atmospheric effects in a SAR interferogram before we order the SAR images. Nevertheless, the results reveal that even in a small area the atmospheric delays can obscure centimetre level ground displacements and introduce a few hundred meters of errors to derived DEM.展开更多
To cherish the memory of the late Professor Duzheng YE on what would have been his 100 th birthday, and to celebrate his great accomplishment in opening a new era of Tibetan Plateau(TP) meteorology, this review pape...To cherish the memory of the late Professor Duzheng YE on what would have been his 100 th birthday, and to celebrate his great accomplishment in opening a new era of Tibetan Plateau(TP) meteorology, this review paper provides an assessment of the atmospheric heat source(AHS) over the TP from different data resources, including observations from local meteorological stations, satellite remote sensing data, and various reanalysis datasets. The uncertainty and applicability of these heat source data are evaluated. Analysis regarding the formation of the AHS over the TP demonstrates that it is not only the cause of the atmospheric circulation, but is also a result of that circulation. Based on numerical experiments, the review further demonstrates that land–sea thermal contrast is only one part of the monsoon story. The thermal forcing of the Tibetan–Iranian Plateau plays a significant role in generating the Asian summer monsoon(ASM), i.e., in addition to pumping water vapor from sea to land and from the lower to the upper troposphere, it also generates a subtropical monsoon–type meridional circulation subject to the angular momentum conservation, providing an ascending-air large-scale background for the development of the ASM.展开更多
New Reynolds' mean momentum equations including both turbulent viscosity and dispersion are used to analyze atmospheric balance motions of the planetary boundary layer. It is pointed out that turbulent dispersion ...New Reynolds' mean momentum equations including both turbulent viscosity and dispersion are used to analyze atmospheric balance motions of the planetary boundary layer. It is pointed out that turbulent dispersion with r 0 will increase depth of Ekman layer, reduce wind velocity in Ekman layer and produce a more satisfactory Ekman spiral lines fit the observed wind hodograph. The wind profile in the surface layer including tur-bulent dispersion is still logarithmic but the von Karman constant k is replaced by k1 = 1 -2/k, the wind increasesa little more rapidly with height.展开更多
A new approach was presented to eliminate the atmosphere-induced phase error utilizing only the single look complex(SLC) synthetic aperture radar(SAR) image set. This method exploited the space-invariance characterist...A new approach was presented to eliminate the atmosphere-induced phase error utilizing only the single look complex(SLC) synthetic aperture radar(SAR) image set. This method exploited the space-invariance characteristic of phase error components contained in image pixels and estimates the phase error using the weighted least-squares(WLS) filter. Actually, this sort of method can be classified as autofocus algorithm which was generally applied in airborne SAR 2-D imaging to compensate the phase error introduced by airplane's nonideal motion. Real data processing, which is relevant to Honda center and Angel stadium of Anaheim test-sites and acquired by Envisat-ASAR during the period from June 2004 to October 2007, was carried out to evaluate this WLS estimation algorithm. Experimental results show that the phase error estimated from WLS filter is very accurate and the focusing quality along NSR dimension is improved prominently via phase correction, which verifies the practicability of this new method.展开更多
Atmospheric effects have significant influence on the performance of a free-space optical continuous variable quantum key distribution(CVQKD)system.In this paper,we investigate how the transmittance,excess noise and i...Atmospheric effects have significant influence on the performance of a free-space optical continuous variable quantum key distribution(CVQKD)system.In this paper,we investigate how the transmittance,excess noise and interruption probability caused by atmospheric effects affect the secret-key rate(SKR)of the CVQKD.Three signal wavelengths,two weather conditions,two detection schemes,and two types of attacks are considered in our investigation.An expression aims at calculating the interruption probability is proposed based on the Kolmogorov spectrum model.The results show that a signal using long working wavelength can propagate much further than that of using short wavelength.Moreover,as the wavelength increases,the influence of interruption probability on the SKR becomes more significant,especially within a certain transmission distance.Therefore,interruption probability must be considered for CVQKD by using long-signal wavelengths.Furthermore,different detection schemes used by the receiver will result in different transmission distances when subjected to individual attacks and collective attacks,respectively.展开更多
This paper deals with the effects of electromagnetic forces on the orbital motion of a spacecraft. The electrostatic charge which a spacecraft generates on its surface in the Earth's magnetic field will be subject to...This paper deals with the effects of electromagnetic forces on the orbital motion of a spacecraft. The electrostatic charge which a spacecraft generates on its surface in the Earth's magnetic field will be subject to a perturbative Lorentz force. A model incorporating all Lorentz forces as a function of orbital elements has been developed on the basis of magnetic and electric fields. This Lorentz force can be used to modify or perturb the spacecraft's orbits. Lagrange's planetary equations in the Gauss variational form are derived using the Lorentz force as a perturbation to a Keplerian orbit. Our approach incorporates orbital inclination and the true anomaly. The numer- ical results of Lagrange's planetary equations for some operational satellites show that the perturbation in the orbital elements of the spacecraft is a second order perturba- tion for a certain value of charge. The effect of the Lorentz force due to its magnetic component is three times that of the Lorentz force due to its electric component. In addition, the numerical results confirm that the strong effects are due to the Lorentz force in a polar orbit, which is consistent with realistic physical phenomena that occur in polar orbits. The results confirm that the magnitude of the Lorentz force depends on the amount of charge. This means that we can use artificial charging to create a force to control the attitude and orbital motion of a spacecraft.展开更多
Dyeing of PET materials by traditional methods presents several problems.Plasma technology has received enormous attention as a solution for the environmental problems related with textile surface modifications,and th...Dyeing of PET materials by traditional methods presents several problems.Plasma technology has received enormous attention as a solution for the environmental problems related with textile surface modifications,and there has been a rapid development and commercialization of plasma technology over the past decade.In this work,the synergistic effect of atmospheric pressure plasma on alkaline etching and deep coloring of dyeing properties on polyethylene terephthalate(PET)fabrics and films was investigated.The topographical changes of the PET surface were investigated by atomic force microscopy(AFM)images,which revealed a smooth surface morphology of the untreated sample whereas a high surface roughness for the plasma and/or alkaline treated samples.The effects of atmospheric pressure plasma on alkaline etching of the structure and properties of PET were investigated by means of differential scanning calorimetry(DSC),the main objective of performing DSC was to investigate the effect of the plasma pre-treatment on the T_g and T_m.Using a tensile strength tester YG065 H and following a standard procedure the maximum force and elongation at maximum force of PET materials was investigated.Oxygen and argon plasma pre-treatment was found to increase the PET fabric weight loss rate.The color strength of PET fabrics was increased by various plasma pre-treatment times.The penetration of plasma and alkaline reactive species deep into the PET structure results in better dyeability and leaves a significant effect on the K/S values of the plasma pre-treated PET.It indicated that plasma pre-treatment has a great synergistic effect with the alkaline treatment of PET.展开更多
APEC conference was held in Beijing during November 3- 12,2014. Hohhot City and Baotou City fall into the peripheral key air pollution control cities in the " Beijing- Tianjin- Hebei" region. Inner Mongolia governme...APEC conference was held in Beijing during November 3- 12,2014. Hohhot City and Baotou City fall into the peripheral key air pollution control cities in the " Beijing- Tianjin- Hebei" region. Inner Mongolia government adopted powerful pollution control measures in the period of the conference. According to pollutant concentration data and meteorological data etc. in the course of the event and the same period of last year,the atmospheric pollution variations and control effect were discussed in this study. The results showed that during October 1- 25,2014,there were 16 days with air pollution in Hohhot City and 15 days with air pollution in Baotou City,respectively increasing by 8% and 34% compared with the same period of 2013,and the concentration of particulate matter was also higher than that of last year. During October 22- 24,2014,Hohhot and Baotou cities were polluted persistently. The variation features of hourly concentration of main pollutants PM(10) and PM2. 5were similar to those in the same period of 2013. That is,the pollutant concentration reached the maximum from 21:00 to 23:00,and the minimum appeared from 15: 00 to 19: 00 in the next day. In the course of the event,the concentration of particulate matter in the two cities stared to reduce greatly on October 26. From October 26 to November 13,there were no days with air pollution in Hohhot City,decreasing by 100% compared with the same period of 2013; there were five days with air pollution in Baotou City,and the numbers of days with slight,moderate and severe pollution reduced by 37%,100% and67% respectively compared with the same period of last year. The persistent air pollution from October 22 to the first 10 days of November was related to unfavorable meteorological conditions,and the meteorological condition in the same period of 2014 was even worse. In the course of the event,the Inner Mongolia Government adopted air pollution control measures around October 25 and began to adopt some powerful pollution control measures on November 1. As a result,air pollution in key cities has been controlled effectively. This event showed that urban atmospheric pollution problem can be resolved,and we should take an optimistic attitude towards this matter.展开更多
Seeing is an important index to evaluate the quality of an astronomical site.To estimate seeing at the Muztagh-Ata site with height and time quantitatively,the European Centre for Medium-Range Weather Forecasts reanal...Seeing is an important index to evaluate the quality of an astronomical site.To estimate seeing at the Muztagh-Ata site with height and time quantitatively,the European Centre for Medium-Range Weather Forecasts reanalysis database(ERA5)is used.Seeing calculated from ERA5 is compared consistently with the Differential Image Motion Monitor seeing at the height of 12 m.Results show that seeing decays exponentially with height at the Muztagh-Ata site.Seeing decays the fastest in fall in 2021 and most slowly with height in summer.The seeing condition is better in fall than in summer.The median value of seeing at 12 m is 0.89 arcsec,the maximum value is1.21 arcsec in August and the minimum is 0.66 arcsec in October.The median value of seeing at 12 m is 0.72arcsec in the nighttime and 1.08 arcsec in the daytime.Seeing is a combination of annual and about biannual variations with the same phase as temperature and wind speed indicating that seeing variation with time is influenced by temperature and wind speed.The Richardson number Ri is used to analyze the atmospheric stability and the variations of seeing are consistent with Ri between layers.These quantitative results can provide an important reference for a telescopic observation strategy.展开更多
Dome A in Antarctica has been demonstrated to be the best site on earth for optical,infrared,and terahertz astronomical observations by more and more evidence,such as excellent free-atmosphere seeing,extremely low per...Dome A in Antarctica has been demonstrated to be the best site on earth for optical,infrared,and terahertz astronomical observations by more and more evidence,such as excellent free-atmosphere seeing,extremely low perceptible water vapor,low sky background,and continuous dark time,etc.In this paper,we present a complete picture of the development of astronomy at Dome A from the very beginning,review recent progress in time-domain astronomy,demonstrate exciting results of the site testing,and address the challenges in instrumentation.Currently proposed projects are briefly discussed.展开更多
The telescopes and the infrastructures may alter the local wind environment around the observatory and further affect the observing environment.After the completion of site testing,it is necessary to analyze the wind ...The telescopes and the infrastructures may alter the local wind environment around the observatory and further affect the observing environment.After the completion of site testing,it is necessary to analyze the wind environment of the entire site and plan the telescope layout to make use of the excellent conditions scientifically and rationally.Taking a typical observatory as an example,the effect of topographical features on the wind environment and the mutual interference between telescope enclosures are analyzed by using the Computational Fluid Dynamics(CFD)method.The CFD simulations are compared with the seeing data from the Differential Image Motion Monitor,and the results are in good agreement,which verifies the effectiveness of the CFD method.The results of wind environment analysis can provide reasonable suggestions for site layout and construction,reducing the interference effects and improving the observing environment.展开更多
Ali in Tibet,5100 m above sea level,is one of the most suitable locations in the world for infrared spectral observations.The atmospheric transmittances at Ali Observatory and Mauna Kea Observatory were calculated by ...Ali in Tibet,5100 m above sea level,is one of the most suitable locations in the world for infrared spectral observations.The atmospheric transmittances at Ali Observatory and Mauna Kea Observatory were calculated by MODTRAN using radiosonde data.The results were 0.848 and 0.789 respectively which indicated better conditions at Ali Observatory.A self-made instrument with a 320×256-pixel HgCdTe infrared focal plane array and a 7.5-cm diameter telescope was utilized for the actual measurements.Without the help of standard stars,the on-site and real-time atmospheric transmittance can be obtained as 0.831 by fitting the relation between the measured atmospheric radiation intensity and the zenith angle based on radiation transfer equations.This paper firstly reports the atmospheric transmittance in the M'band(4.605–4.755μm)at the 5100 m-altitude Ali observatory by actual measurement.It shows that the high-altitude Ali observatory with sufficiently low water vapor content is suitable for observation in the mid-infrared bands.展开更多
Most reflector surface holographic measurements of a large radio telescope utilize a geostationary satellite as the signal source. The shortcoming is that those measurements could only be done at a limited elevation a...Most reflector surface holographic measurements of a large radio telescope utilize a geostationary satellite as the signal source. The shortcoming is that those measurements could only be done at a limited elevation angle due to the satellite’s relatively stationary state. This paper proposed a new wideband microwave holographic measurement method based on radio sources to achieve full-elevation-angle measurement with small size reference antenna. In theoretical derivation, the time delay and phase change due to path length and device difference between the antenna under test and reference antenna are compensated first. Then the correct method of wideband holography effect, which is because of antenna pattern differing under different wavelengths when receiving a wideband signal, is presented. To verify the proposed methodology, a wideband microwave holographic measurement system is established, the data processing procedure is illustrated, and the reflector surface measurement experiments on a 40 m radio telescope at different elevation angles are conducted. The result shows that the primary reflector surface root-mean-square at around elevation angles of 28°, 44°, 49°, and 75° are respectively 0.213 mm, 0.170 mm, 0.188 mm, and 0.199 mm. It is basically consistent with the real data, indicating that the proposed wideband microwave holography methodology is feasible.展开更多
The new Wuqing 70 m radio telescope is first used for the downlink data reception in the first Mars exploration mission of China,and will be used for the other deep space communications and radio astronomical observat...The new Wuqing 70 m radio telescope is first used for the downlink data reception in the first Mars exploration mission of China,and will be used for the other deep space communications and radio astronomical observations in the future.The main specifications and measurement results of some properties in the X-band are introduced in this paper,such as pointing calibration,gain and efficiency,system noise temperature,system equivalent flux density,and variations with elevation.The 23 parameters pointing calibration model considering the atmospheric refraction correction in real time is presented in the telescope,and the pointing accuracy reaches 570 in azimuth direction and 607 in elevation direction for different weather conditions.More than 62%efficiencies are achieved at full elevation range,and more than 70%in the mid-elevation.The system equivalent flux density of the X-band in the mid-elevation reaches 26 Jy.展开更多
A first generation sodium Laser Guide Star Adaptive Optics System (LGS-AOS) was developed and integrated into the Lijiang 1.8 m telescope in 2013. The LGS-AOS has three sub-systems: (1) a 20W long pulsed sodium l...A first generation sodium Laser Guide Star Adaptive Optics System (LGS-AOS) was developed and integrated into the Lijiang 1.8 m telescope in 2013. The LGS-AOS has three sub-systems: (1) a 20W long pulsed sodium laser, (2) a 300-millimeter-diameter laser launch telescope, and (3) a 37-element com- pact adaptive optics system. On 2014 January 25, we obtained high resolution images of an my 8.18 star, HIP 43963, during the first light of the LGS-AOS. In this paper, the sodium laser, the laser launch telescope, the compact adaptive optics system and the first light results will be presented.展开更多
A tilt-correction adaptive optical system installed on the 430 mm Solar Telescope of Nanjing University has been put in operation. It consists of a tip-tilt mirror, a correlation tracker and an imaging CCD camera. An ...A tilt-correction adaptive optical system installed on the 430 mm Solar Telescope of Nanjing University has been put in operation. It consists of a tip-tilt mirror, a correlation tracker and an imaging CCD camera. An absolute difference algorithm is used for detecting image motion in the correlation tracker. The sampling frequency of the system is 419 Hz. We give a description of the system's configuration, an analysis of its performance and a report of our observational results. A residual jitter of 0.14 arcsec has been achieved. The error rejection bandwidth of the system can be adjusted in the range 5-28 Hz according to the beacon size and the strength of atmospheric turbulence.展开更多
An atmospheric turbulence phase screen generated using a fractal method is introduced. It is etched onto fused silica and tested in the laboratory. The etched screen has relatively low cost, high resolution, and can b...An atmospheric turbulence phase screen generated using a fractal method is introduced. It is etched onto fused silica and tested in the laboratory. The etched screen has relatively low cost, high resolution, and can be used in the broad waveband under severe temperature conditions. Our results are shown to agree well with the theory.展开更多
基金supported by the National Key Technologies R&D Program (No. 2006BAC02A05)the National Basic Research Program of China (No.2007CB613501)+1 种基金the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KGCX2-YW-214)the Special Funds of "Mountain Tai Scholar" Construction Project and BHP Billiton LTD
文摘Potassium titanate (K4Ti3O8) was synthesized by the reaction between ilmenite and concentrated KOH solution in the atmosphere of nitrogen,still air,and oxygen,respectively.The obtained samples were systematically investigated by X-ray diffraction (XRD),inductively coupled plasma optical emission spectrometer (ICP-OES),and scanning electron microscopy (SEM).XRD results indicate that K4Ti3O8 have been synthesized in different atmospheres.The oxidizing atmosphere could enhance the conversion rate of Ti from ilmenite to K4Ti3O8,and Fe(II) is easily oxidized to trivalent iron Fe(III) during the reaction.Furthermore,SEM images show that the different atmospheres have significant effect on K4Ti3O8 crystal morphology and particle size.Well shaped K4Ti3O8 crystals are obtained in nonoxidizing atmosphere.
文摘In the past, the planetary radiation balance served to quantify the atmospheric greenhouse effect by the difference between the globally averaged near-surface temperature of and the respective effective radiation temperature of the Earth without atmosphere of resulting in . Since such a “thought experiment” prohibits any rigorous assessment of its results, this study considered the Moon as a testbed for the Earth in the absence of its atmosphere. Since the angular velocity of Moon’s rotation is 27.4 times slower than that of the Earth, the forcing method, the force-restore method, and a multilayer-force-restore method, used in climate modeling during the past four decades, were alternatively applied to address the influence of the angular velocity in determining the Moon’s globally averaged skin (or slab) temperature, . The multilayer-force-restore method always provides?the highest values for , followed by the force-restore method and the forcing method, but the differences are marginal. Assuming a solar albedo of , a relative emissivity , and a solar constant of and applying the multilayer-force-restore method yielded and for the Moon. Using the same values for α, ε, and S, but assuming the Earth’s angular velocity for the Moon yielded and quantifying the effect of the terrestrial atmosphere by . A sensitivity study for a solar albedo of commonly assumed for the Earth in the absence of its atmosphere yielded , , and . This means that the atmospheric effect would be more than twice as large as the aforementioned difference of 33 K. To generalize the findings, twelve synodic months (i.e., 354 Earth days) and 365 Earth days, where , a Sun-zenith-distance dependent solar albedo, and the variation of the solar radiation in dependence of the actual orbit position and the tilt angle of the corresponding rotation axis to the ecliptic were considered. The case of Moon’s true angular velocity yielded and . Whereas Earth’s 27.4 times higher angular velocity yielded , and . In both cases, the effective radiation temperature is ,?because the computed global albedo is . Thus, the effective radiation temperature yields flawed results when used for quantifying the atmospheric greenhouse effect.
文摘The stability question of large-scale horizontal motion in the atmosphere under the effect of Rossby parameter is discussed in this paper by using the qualitative analysis theory of ordinary differential equations. The following aspects are reviewed: The stability of large-scale horizontal motion in the atmosphere accords with the common inertial stability criterion when the effect of Rossby parameter is not considered (Yang, 1983), and that, on the other hand, the motion will bifurcate two times with the variation of absolute vorticity of basic Zephyr flow at the initial position under the effect of Rossby parameter. Furthermore, in the inertial stable region, if the effect of geostrophic deviation at the initial position is considered, the motion will not only bifurcate but also generate a catastrophe.
文摘Atmospheric effects on interferometric synthetic aperture radar(InSAR) measurements are quantitatively studied based on a tandem pair of SAR data and a month-long continuous GPS tracking data obtained at six stations. Differential atmospheric signals extracted from the SAR data for two selected areas show apparent power law characteristics. The RMS values of the signals are 2.04 and 3.66 rad respectively for the two areas. These differential delays can potentially cause in the two areas peak-to-peak deformation errors of 3.64 and 6.52cm, respectively, at the 95% confidence level and Gaussian distribution. The respective potential peak-to-peak DEM errors are 123 and 221 m. The GPS tropospheric total zenith delays estimate indicates that a peak-to-peak error of about 7.8cm can potentially be caused in a SAR interferogram with only 1 d interval at the 95% confidence level. The error increases to about 9.6cm for 10 d interval. The potential peak-to-peak DEM and deformation errors estimated from GPS total zenith delay measurements are however quite similar to those estimated from InSAR data. This provides us with a useful tool to pre-estimate the potential atmospheric effects in a SAR interferogram before we order the SAR images. Nevertheless, the results reveal that even in a small area the atmospheric delays can obscure centimetre level ground displacements and introduce a few hundred meters of errors to derived DEM.
基金supported by the Key Research Program of Frontier Sciences of the Chinese Academy of Sciencesthe Major Research Plan of the National Natural Science Foundation of China(Grant Nos.91637312,91437219,91637208,and 41530426)the Special Program for Applied Research on Super Computation of the NSFC–Guangdong Joint Fund(second phase)(Grant No.U1501501)
文摘To cherish the memory of the late Professor Duzheng YE on what would have been his 100 th birthday, and to celebrate his great accomplishment in opening a new era of Tibetan Plateau(TP) meteorology, this review paper provides an assessment of the atmospheric heat source(AHS) over the TP from different data resources, including observations from local meteorological stations, satellite remote sensing data, and various reanalysis datasets. The uncertainty and applicability of these heat source data are evaluated. Analysis regarding the formation of the AHS over the TP demonstrates that it is not only the cause of the atmospheric circulation, but is also a result of that circulation. Based on numerical experiments, the review further demonstrates that land–sea thermal contrast is only one part of the monsoon story. The thermal forcing of the Tibetan–Iranian Plateau plays a significant role in generating the Asian summer monsoon(ASM), i.e., in addition to pumping water vapor from sea to land and from the lower to the upper troposphere, it also generates a subtropical monsoon–type meridional circulation subject to the angular momentum conservation, providing an ascending-air large-scale background for the development of the ASM.
文摘New Reynolds' mean momentum equations including both turbulent viscosity and dispersion are used to analyze atmospheric balance motions of the planetary boundary layer. It is pointed out that turbulent dispersion with r 0 will increase depth of Ekman layer, reduce wind velocity in Ekman layer and produce a more satisfactory Ekman spiral lines fit the observed wind hodograph. The wind profile in the surface layer including tur-bulent dispersion is still logarithmic but the von Karman constant k is replaced by k1 = 1 -2/k, the wind increasesa little more rapidly with height.
基金Projects(41271459)supported by the National Natural Science Foundation of China
文摘A new approach was presented to eliminate the atmosphere-induced phase error utilizing only the single look complex(SLC) synthetic aperture radar(SAR) image set. This method exploited the space-invariance characteristic of phase error components contained in image pixels and estimates the phase error using the weighted least-squares(WLS) filter. Actually, this sort of method can be classified as autofocus algorithm which was generally applied in airborne SAR 2-D imaging to compensate the phase error introduced by airplane's nonideal motion. Real data processing, which is relevant to Honda center and Angel stadium of Anaheim test-sites and acquired by Envisat-ASAR during the period from June 2004 to October 2007, was carried out to evaluate this WLS estimation algorithm. Experimental results show that the phase error estimated from WLS filter is very accurate and the focusing quality along NSR dimension is improved prominently via phase correction, which verifies the practicability of this new method.
基金Project supported by the National Natural Science Foundation of China(Grant No.62071180)Fundamental Research Funds for the Central Universities,China(Grant No.2020MS099)。
文摘Atmospheric effects have significant influence on the performance of a free-space optical continuous variable quantum key distribution(CVQKD)system.In this paper,we investigate how the transmittance,excess noise and interruption probability caused by atmospheric effects affect the secret-key rate(SKR)of the CVQKD.Three signal wavelengths,two weather conditions,two detection schemes,and two types of attacks are considered in our investigation.An expression aims at calculating the interruption probability is proposed based on the Kolmogorov spectrum model.The results show that a signal using long working wavelength can propagate much further than that of using short wavelength.Moreover,as the wavelength increases,the influence of interruption probability on the SKR becomes more significant,especially within a certain transmission distance.Therefore,interruption probability must be considered for CVQKD by using long-signal wavelengths.Furthermore,different detection schemes used by the receiver will result in different transmission distances when subjected to individual attacks and collective attacks,respectively.
文摘This paper deals with the effects of electromagnetic forces on the orbital motion of a spacecraft. The electrostatic charge which a spacecraft generates on its surface in the Earth's magnetic field will be subject to a perturbative Lorentz force. A model incorporating all Lorentz forces as a function of orbital elements has been developed on the basis of magnetic and electric fields. This Lorentz force can be used to modify or perturb the spacecraft's orbits. Lagrange's planetary equations in the Gauss variational form are derived using the Lorentz force as a perturbation to a Keplerian orbit. Our approach incorporates orbital inclination and the true anomaly. The numer- ical results of Lagrange's planetary equations for some operational satellites show that the perturbation in the orbital elements of the spacecraft is a second order perturba- tion for a certain value of charge. The effect of the Lorentz force due to its magnetic component is three times that of the Lorentz force due to its electric component. In addition, the numerical results confirm that the strong effects are due to the Lorentz force in a polar orbit, which is consistent with realistic physical phenomena that occur in polar orbits. The results confirm that the magnitude of the Lorentz force depends on the amount of charge. This means that we can use artificial charging to create a force to control the attitude and orbital motion of a spacecraft.
基金partially supported by the National Natural Science Foundation of China Contract 11375042
文摘Dyeing of PET materials by traditional methods presents several problems.Plasma technology has received enormous attention as a solution for the environmental problems related with textile surface modifications,and there has been a rapid development and commercialization of plasma technology over the past decade.In this work,the synergistic effect of atmospheric pressure plasma on alkaline etching and deep coloring of dyeing properties on polyethylene terephthalate(PET)fabrics and films was investigated.The topographical changes of the PET surface were investigated by atomic force microscopy(AFM)images,which revealed a smooth surface morphology of the untreated sample whereas a high surface roughness for the plasma and/or alkaline treated samples.The effects of atmospheric pressure plasma on alkaline etching of the structure and properties of PET were investigated by means of differential scanning calorimetry(DSC),the main objective of performing DSC was to investigate the effect of the plasma pre-treatment on the T_g and T_m.Using a tensile strength tester YG065 H and following a standard procedure the maximum force and elongation at maximum force of PET materials was investigated.Oxygen and argon plasma pre-treatment was found to increase the PET fabric weight loss rate.The color strength of PET fabrics was increased by various plasma pre-treatment times.The penetration of plasma and alkaline reactive species deep into the PET structure results in better dyeability and leaves a significant effect on the K/S values of the plasma pre-treated PET.It indicated that plasma pre-treatment has a great synergistic effect with the alkaline treatment of PET.
基金Supported by the Small-scale Service Construction Program of China Meteorological Administration(Construction of Environmental Meteorological Early Warning Service System in Beijing-Tianjin-Hebei Region,Changjiang River Delta and Zhujiang River Dalta)Expert Forecaster Innovation Panel of Dust Storm and Haze in Inner MongoliaSci-tech Innovation Program of Inner Mongolia Meteorological Bureau(nmqxkjcx201411)
文摘APEC conference was held in Beijing during November 3- 12,2014. Hohhot City and Baotou City fall into the peripheral key air pollution control cities in the " Beijing- Tianjin- Hebei" region. Inner Mongolia government adopted powerful pollution control measures in the period of the conference. According to pollutant concentration data and meteorological data etc. in the course of the event and the same period of last year,the atmospheric pollution variations and control effect were discussed in this study. The results showed that during October 1- 25,2014,there were 16 days with air pollution in Hohhot City and 15 days with air pollution in Baotou City,respectively increasing by 8% and 34% compared with the same period of 2013,and the concentration of particulate matter was also higher than that of last year. During October 22- 24,2014,Hohhot and Baotou cities were polluted persistently. The variation features of hourly concentration of main pollutants PM(10) and PM2. 5were similar to those in the same period of 2013. That is,the pollutant concentration reached the maximum from 21:00 to 23:00,and the minimum appeared from 15: 00 to 19: 00 in the next day. In the course of the event,the concentration of particulate matter in the two cities stared to reduce greatly on October 26. From October 26 to November 13,there were no days with air pollution in Hohhot City,decreasing by 100% compared with the same period of 2013; there were five days with air pollution in Baotou City,and the numbers of days with slight,moderate and severe pollution reduced by 37%,100% and67% respectively compared with the same period of last year. The persistent air pollution from October 22 to the first 10 days of November was related to unfavorable meteorological conditions,and the meteorological condition in the same period of 2014 was even worse. In the course of the event,the Inner Mongolia Government adopted air pollution control measures around October 25 and began to adopt some powerful pollution control measures on November 1. As a result,air pollution in key cities has been controlled effectively. This event showed that urban atmospheric pollution problem can be resolved,and we should take an optimistic attitude towards this matter.
基金funded by the National Natural Science Foundation of China(NSFC)the Chinese Academy of Sciences(CAS)(grant No.U2031209)the National Natural Science Foundation of China(NSFC,grant Nos.11872128,42174192,and 91952111)。
文摘Seeing is an important index to evaluate the quality of an astronomical site.To estimate seeing at the Muztagh-Ata site with height and time quantitatively,the European Centre for Medium-Range Weather Forecasts reanalysis database(ERA5)is used.Seeing calculated from ERA5 is compared consistently with the Differential Image Motion Monitor seeing at the height of 12 m.Results show that seeing decays exponentially with height at the Muztagh-Ata site.Seeing decays the fastest in fall in 2021 and most slowly with height in summer.The seeing condition is better in fall than in summer.The median value of seeing at 12 m is 0.89 arcsec,the maximum value is1.21 arcsec in August and the minimum is 0.66 arcsec in October.The median value of seeing at 12 m is 0.72arcsec in the nighttime and 1.08 arcsec in the daytime.Seeing is a combination of annual and about biannual variations with the same phase as temperature and wind speed indicating that seeing variation with time is influenced by temperature and wind speed.The Richardson number Ri is used to analyze the atmospheric stability and the variations of seeing are consistent with Ri between layers.These quantitative results can provide an important reference for a telescopic observation strategy.
基金supported in part by the National Natural Science Foundation of China(Grant Nos.11733007,11673037 and 11273019)the National Basic Research Program(973 Program)of China(Grant No.2013CB834900)the Chinese Polar Environment Comprehensive Investigation&Assessment Program(Grant No.CHINARE2016-02-03)。
文摘Dome A in Antarctica has been demonstrated to be the best site on earth for optical,infrared,and terahertz astronomical observations by more and more evidence,such as excellent free-atmosphere seeing,extremely low perceptible water vapor,low sky background,and continuous dark time,etc.In this paper,we present a complete picture of the development of astronomy at Dome A from the very beginning,review recent progress in time-domain astronomy,demonstrate exciting results of the site testing,and address the challenges in instrumentation.Currently proposed projects are briefly discussed.
基金supported by the National Natural Science Foundation of China(U1831209)。
文摘The telescopes and the infrastructures may alter the local wind environment around the observatory and further affect the observing environment.After the completion of site testing,it is necessary to analyze the wind environment of the entire site and plan the telescope layout to make use of the excellent conditions scientifically and rationally.Taking a typical observatory as an example,the effect of topographical features on the wind environment and the mutual interference between telescope enclosures are analyzed by using the Computational Fluid Dynamics(CFD)method.The CFD simulations are compared with the seeing data from the Differential Image Motion Monitor,and the results are in good agreement,which verifies the effectiveness of the CFD method.The results of wind environment analysis can provide reasonable suggestions for site layout and construction,reducing the interference effects and improving the observing environment.
基金funded by the National Natural Science Foundation of China(Grant Nos.11673064,11803089,U1931124)。
文摘Ali in Tibet,5100 m above sea level,is one of the most suitable locations in the world for infrared spectral observations.The atmospheric transmittances at Ali Observatory and Mauna Kea Observatory were calculated by MODTRAN using radiosonde data.The results were 0.848 and 0.789 respectively which indicated better conditions at Ali Observatory.A self-made instrument with a 320×256-pixel HgCdTe infrared focal plane array and a 7.5-cm diameter telescope was utilized for the actual measurements.Without the help of standard stars,the on-site and real-time atmospheric transmittance can be obtained as 0.831 by fitting the relation between the measured atmospheric radiation intensity and the zenith angle based on radiation transfer equations.This paper firstly reports the atmospheric transmittance in the M'band(4.605–4.755μm)at the 5100 m-altitude Ali observatory by actual measurement.It shows that the high-altitude Ali observatory with sufficiently low water vapor content is suitable for observation in the mid-infrared bands.
基金funded by the Astronomical Joint Fund of the National Natural Science Foundation of China and Chinese Academy of Sciences (Grant Nos. U1831114, 11941002, and12073048)。
文摘Most reflector surface holographic measurements of a large radio telescope utilize a geostationary satellite as the signal source. The shortcoming is that those measurements could only be done at a limited elevation angle due to the satellite’s relatively stationary state. This paper proposed a new wideband microwave holographic measurement method based on radio sources to achieve full-elevation-angle measurement with small size reference antenna. In theoretical derivation, the time delay and phase change due to path length and device difference between the antenna under test and reference antenna are compensated first. Then the correct method of wideband holography effect, which is because of antenna pattern differing under different wavelengths when receiving a wideband signal, is presented. To verify the proposed methodology, a wideband microwave holographic measurement system is established, the data processing procedure is illustrated, and the reflector surface measurement experiments on a 40 m radio telescope at different elevation angles are conducted. The result shows that the primary reflector surface root-mean-square at around elevation angles of 28°, 44°, 49°, and 75° are respectively 0.213 mm, 0.170 mm, 0.188 mm, and 0.199 mm. It is basically consistent with the real data, indicating that the proposed wideband microwave holography methodology is feasible.
基金funded by the Astronomical Joint Fund of the National Natural Science Foundation of China and Chinese Academy of Sciences(U1831114)。
文摘The new Wuqing 70 m radio telescope is first used for the downlink data reception in the first Mars exploration mission of China,and will be used for the other deep space communications and radio astronomical observations in the future.The main specifications and measurement results of some properties in the X-band are introduced in this paper,such as pointing calibration,gain and efficiency,system noise temperature,system equivalent flux density,and variations with elevation.The 23 parameters pointing calibration model considering the atmospheric refraction correction in real time is presented in the telescope,and the pointing accuracy reaches 570 in azimuth direction and 607 in elevation direction for different weather conditions.More than 62%efficiencies are achieved at full elevation range,and more than 70%in the mid-elevation.The system equivalent flux density of the X-band in the mid-elevation reaches 26 Jy.
基金supported by the Creative Foundation of the Chinese Academy of Sciences,China
文摘A first generation sodium Laser Guide Star Adaptive Optics System (LGS-AOS) was developed and integrated into the Lijiang 1.8 m telescope in 2013. The LGS-AOS has three sub-systems: (1) a 20W long pulsed sodium laser, (2) a 300-millimeter-diameter laser launch telescope, and (3) a 37-element com- pact adaptive optics system. On 2014 January 25, we obtained high resolution images of an my 8.18 star, HIP 43963, during the first light of the LGS-AOS. In this paper, the sodium laser, the laser launch telescope, the compact adaptive optics system and the first light results will be presented.
基金Supported by the National Natural Science Foundation of China
文摘A tilt-correction adaptive optical system installed on the 430 mm Solar Telescope of Nanjing University has been put in operation. It consists of a tip-tilt mirror, a correlation tracker and an imaging CCD camera. An absolute difference algorithm is used for detecting image motion in the correlation tracker. The sampling frequency of the system is 419 Hz. We give a description of the system's configuration, an analysis of its performance and a report of our observational results. A residual jitter of 0.14 arcsec has been achieved. The error rejection bandwidth of the system can be adjusted in the range 5-28 Hz according to the beacon size and the strength of atmospheric turbulence.
基金supported by the dedicated operation funding forastronomical observation stations and facilities from the Chinese Academy of Sciences
文摘An atmospheric turbulence phase screen generated using a fractal method is introduced. It is etched onto fused silica and tested in the laboratory. The etched screen has relatively low cost, high resolution, and can be used in the broad waveband under severe temperature conditions. Our results are shown to agree well with the theory.