On the basis of the reported air quality index (API) and air pollutant monitoring data provided by the Guangzhou Environment Monitoring Stations over the last twenty-five years, the characteristics of air quality, p...On the basis of the reported air quality index (API) and air pollutant monitoring data provided by the Guangzhou Environment Monitoring Stations over the last twenty-five years, the characteristics of air quality, prominent pollutants, and variation of the average annual concentrations of SOE, NOE, total suspended particulate (TSP), fine particulates (PM10), CO and dustfall in Guangzhou City were analyzed. Results showed that TSP was the prominent pollutant in the ambient air environment of Guangzhou City. Of the prominent pollutants, TSP accounted for nearly 62%, SOE 12.3%, and NOx 6.4%, respectively. The average API of Guangzhou over 6 years was higher than that of Beijing, Tianjin, Nanjing, Hangzhou, Suzhou and Shanghai, and lower than that of Shenzhen, Zhuhai and Shantou. Concentrations of air pollutants have shown a downward trend in recent years, but they are generally worse than ambient air quality standards for USA, Hong Kong and EU. SOE and NOx pollution were still serious, impling that waste gas pollution from all kinds of vehicles had become a significant problem for environmental protection in Guangzhou. The possible causes of worsening air quality were also discussed in this paper.展开更多
The quality of Yi'an gas coal before and after low temperature upgrading under either a N2 or H2 atmosphere was examined by thermogravimetric and infrared analyses. The effect of upgrading on the prepared coke qualit...The quality of Yi'an gas coal before and after low temperature upgrading under either a N2 or H2 atmosphere was examined by thermogravimetric and infrared analyses. The effect of upgrading on the prepared coke quality was analyzed. The results show that the carboxyl and phenolic hydroxyls in the coal molecular structure are removed after upgrading by low temperature pyrolysis under either N2 or Hz atmospheres. This improves coal caking properties to a certain extent. The upgrading effect under a Hz atmosphere is remarkably better than the effect observed after upgrading under N2. Compared to coke obtained from raw coal, the compressiveand micro-strength of the cokes obtained from upgraded coal are greatly improved. The effect on coke reactivity with CO2 is not significant. The best upgrading temperature for Yi'an gas coal under either a N2 or H2 atmosphere is 250 or 275 ℃ respectively.展开更多
基金Project supported by the National Natural Science Foundation of China (No. 30270282)the Key Project of Chinese Education Ministry (No. 704037)the Special Invited Professor Foundation of Guangdong Province.
文摘On the basis of the reported air quality index (API) and air pollutant monitoring data provided by the Guangzhou Environment Monitoring Stations over the last twenty-five years, the characteristics of air quality, prominent pollutants, and variation of the average annual concentrations of SOE, NOE, total suspended particulate (TSP), fine particulates (PM10), CO and dustfall in Guangzhou City were analyzed. Results showed that TSP was the prominent pollutant in the ambient air environment of Guangzhou City. Of the prominent pollutants, TSP accounted for nearly 62%, SOE 12.3%, and NOx 6.4%, respectively. The average API of Guangzhou over 6 years was higher than that of Beijing, Tianjin, Nanjing, Hangzhou, Suzhou and Shanghai, and lower than that of Shenzhen, Zhuhai and Shantou. Concentrations of air pollutants have shown a downward trend in recent years, but they are generally worse than ambient air quality standards for USA, Hong Kong and EU. SOE and NOx pollution were still serious, impling that waste gas pollution from all kinds of vehicles had become a significant problem for environmental protection in Guangzhou. The possible causes of worsening air quality were also discussed in this paper.
文摘The quality of Yi'an gas coal before and after low temperature upgrading under either a N2 or H2 atmosphere was examined by thermogravimetric and infrared analyses. The effect of upgrading on the prepared coke quality was analyzed. The results show that the carboxyl and phenolic hydroxyls in the coal molecular structure are removed after upgrading by low temperature pyrolysis under either N2 or Hz atmospheres. This improves coal caking properties to a certain extent. The upgrading effect under a Hz atmosphere is remarkably better than the effect observed after upgrading under N2. Compared to coke obtained from raw coal, the compressiveand micro-strength of the cokes obtained from upgraded coal are greatly improved. The effect on coke reactivity with CO2 is not significant. The best upgrading temperature for Yi'an gas coal under either a N2 or H2 atmosphere is 250 or 275 ℃ respectively.