With the TiB2−SiC powders after spray granulation and vacuum calcination as raw materials,the TiB2−SiC coating was prepared by supersonic atmospheric plasma spraying(SAPS).The effects of spraying power and spraying di...With the TiB2−SiC powders after spray granulation and vacuum calcination as raw materials,the TiB2−SiC coating was prepared by supersonic atmospheric plasma spraying(SAPS).The effects of spraying power and spraying distance on the properties of the TiB2−SiC coating were investigated and the fabrication processing of SAPS was optimized.The results show that the sprayed powders after calcination have a uniform particle size distribution,good sphericity and enhanced fluidity.The coating prepared by the calcined powders has a dense structure and high deposition efficiency.When the calcined TiB2−SiC powders are used and the spraying power is 95 kW and the spraying distance is 150 mm during supersonic plasma spraying,the obtained TiB2−SiC coating behaves the best comprehensive performance with the porosity,microhardness,bonding strength and resistivity equal to 5.6%,3.57 GPa,18.3 MPa and 10.8 mΩ·cm,respectively.展开更多
The theory of functionally graded material(FGM)was applied in the fabrication process of PEN(Positive-Electrolyte-Negative),the core component of solid oxide fuel cell(SOFC).To enhance its electrochemical performance,...The theory of functionally graded material(FGM)was applied in the fabrication process of PEN(Positive-Electrolyte-Negative),the core component of solid oxide fuel cell(SOFC).To enhance its electrochemical performance,the functionally graded PEN of planar SOFC was prepared by atmospheric plasma spray(APS).The cross-sectional SEM micrograph and element energy spectrum of the resultant PEN were analyzed.Its interface resistance was also compared with that without the graded layers to investigate the electrochemical performance enhanced by the functionally graded layers.Moreover,a new process, suspension plasma spray(SPS)was applied to preparing the SOFC electrolyte.Higher densification of the coating by SPS,1.61%,is observed,which is helpful to effectively improve its electrical conductivity.The grain size of the electrolyte coating fabricated by SPS is also smaller than that by APS,which is more favourable to obtain the dense electrolyte coatings.To sum up,all mentioned above can prove that the hybrid process of APS and SPS could be a better approach to fabricate the PEN of SOFC stacks,in which APS is for porous electrodes and SPS for dense electrolyte.展开更多
A solid oxide fuel cell(SOFC)with a liquid antimony anode(LAA)is a potential energy conversion technology for the use of impurity-containing fuels.Atmospheric plasma spraying(APS)technology has become a promising LAAS...A solid oxide fuel cell(SOFC)with a liquid antimony anode(LAA)is a potential energy conversion technology for the use of impurity-containing fuels.Atmospheric plasma spraying(APS)technology has become a promising LAASOFC preparation method because of its economy and convenience.In this paper,button SOFCs with different cathode materials and ratios of pore former were prepared by the APS method and were operated at 750C.The effect of the cathode structure on the electrochemical performance of the LAA-SOFCs was analyzed,and an optimized spraying method for LAA-SOFCs was developed.A tubular LAA-SOFC was prepared using the APS method based on the optimized spraying method,and a peak power of 2.5 W was reached.The tubular cell was also measured at a constant current of 2 A for 20 h and was fed with a sulfur-containing fuel to demonstrate its impurity resistance and electrode stability.展开更多
Surface coating is a critical procedure in the case of maintenance engineering. Ceramic coating of the wear areas is of the best practice which substantially enhances the Mean Time between Failure (MTBF). EN24 is a co...Surface coating is a critical procedure in the case of maintenance engineering. Ceramic coating of the wear areas is of the best practice which substantially enhances the Mean Time between Failure (MTBF). EN24 is a commercial grade alloy which is used for various industrial applications like sleeves, nuts, bolts, shafts, etc. EN24 is having comparatively low corrosion resistance, and ceramic coating of the wear and corroding areas of such parts is a best followed practice which highly improves the frequent failures. The coating quality mainly depends on the coating thickness, surface roughness and coating hardness which finally decides the operability. This paper describes an experimental investigation to effectively optimize the Atmospheric Plasma Spray process input parameters of Al<sub>2</sub>O<sub>3</sub>-40% TiO<sub>2</sub> coatings to get the best quality of coating on EN24 alloy steel substrate. The experiments are conducted with an Orthogonal Array (OA) design of experiments (DoE). In the current experiment, critical input parameters are considered and some of the vital output parameters are monitored accordingly and separate mathematical models are generated using regression analysis. The Analytic Hierarchy Process (AHP) method is used to generate weights for the individual objective functions and based on that, a combined objective function is made. An advanced optimization method, Teaching-Learning-Based Optimization algorithm (TLBO), is practically utilized to the combined objective function to optimize the values of input parameters to get the best output parameters. Confirmation tests are also conducted and their output results are compared with predicted values obtained through mathematical models. The dominating effects of Al<sub>2</sub>O<sub>3</sub>-40% TiO<sub>2</sub> spray parameters on output parameters: surface roughness, coating thickness and coating hardness are discussed in detail. It is concluded that the input parameters variation directly affects the characteristics of output parameters and any number of input as well as output parameters can be easily optimized using the current approach.展开更多
SS304 is a commercial grade stainless steel which is used for various engineering applications like shafts, guides, jigs, fixtures, etc. Ceramic coating of the wear areas of such parts is a regular practice which sign...SS304 is a commercial grade stainless steel which is used for various engineering applications like shafts, guides, jigs, fixtures, etc. Ceramic coating of the wear areas of such parts is a regular practice which significantly enhances the Mean Time Between Failure (MTBF). The final coating quality depends mainly on the coating thickness, surface roughness and hardness which ultimately decides the life. This paper presents an experimental study to effectively optimize the Atmospheric Plasma Spray (APS) process input parameters of Al<sub>2</sub>O<sub>3</sub>-40% TiO2 ceramic coatings to get the best quality of coating on commercial SS304 substrate. The experiments are conducted with a three-level L<sub>18</sub> Orthogonal Array (OA) Design of Experiments (DoE). Critical input parameters considered are: spray nozzle distance, substrate rotating speed, current of the arc, carrier gas flow and coating powder flow rate. The surface roughness, coating thickness and hardness are considered as the output parameters. Mathematical models are generated using regression analysis for individual output parameters. The Analytic Hierarchy Process (AHP) method is applied to generate weights for the individual objective functions and a combined objective function is generated. An advanced optimization method, Teaching-Learning-Based Optimization algorithm (TLBO), is applied to the combined objective function to optimize the values of input parameters to get the best output parameters and confirmation tests are conducted based on that. The significant effects of spray parameters on surface roughness, coating thickness and coating hardness are studied in detail.展开更多
To improve the durability of underwater rotating products,the corrosion characteristics in harsh marine environment were evaluated through various electrochemical experiments on the Al2O3-3TiO2 and CoNiCrAlY coating l...To improve the durability of underwater rotating products,the corrosion characteristics in harsh marine environment were evaluated through various electrochemical experiments on the Al2O3-3TiO2 and CoNiCrAlY coating layers by atmospheric pressure plasma spray coating process.By evaluating the corrosion resistance of these materials,their applicability to environmentally friendly power generation equipment such as blades of tidal current turbines was examined.According to the Tafel analysis for micro-areas including the coating layer,the coating/metal interlayer and the base metal,the Al2O3-3TiO2 coating layer and the CoNiCrAlY coating layer show markedly lower corrosion current density than the base metal.The corrosion current density of the CoNiCrAlY coating layer (9.75316×10-8A/cm2) is about 1.6 times more than that of the Al2O3-3TiO2 coating layer (6.13139×10-8A/cm2).展开更多
Apatite-type lanthanum silicate was successfully synthesized via a solid state re- action protocol at 1400~C in a vacuum for 4 hours. The powder was synthesized faster and at a lower reaction temperature than by conve...Apatite-type lanthanum silicate was successfully synthesized via a solid state re- action protocol at 1400~C in a vacuum for 4 hours. The powder was synthesized faster and at a lower reaction temperature than by conventional solid state reaction methods. The resulting powder was used in the fabrication of a coating deposited by atmospheric plasma spray (APS) technology. The microstructure of the coating was analyzed by X-ray diffraction and scanning electron microscopy. Heat treatment was found to fully crystallize the coating, increasing its den-sity. The ionic conductivity of the apatite coating was 0.39 (0.054) mS/cm at 850 (700) ℃, and its activation energy was 0.67 eV.展开更多
基金The authors are grateful for the financial supports from Guangdong Academy of Sciences Project(2018GDASCX-0402)of China,Yunnan Science and Technology Plan Project of China(2018IC080)the Natural Science Foundation of Hunan Province of China(2018JJ2524).
文摘With the TiB2−SiC powders after spray granulation and vacuum calcination as raw materials,the TiB2−SiC coating was prepared by supersonic atmospheric plasma spraying(SAPS).The effects of spraying power and spraying distance on the properties of the TiB2−SiC coating were investigated and the fabrication processing of SAPS was optimized.The results show that the sprayed powders after calcination have a uniform particle size distribution,good sphericity and enhanced fluidity.The coating prepared by the calcined powders has a dense structure and high deposition efficiency.When the calcined TiB2−SiC powders are used and the spraying power is 95 kW and the spraying distance is 150 mm during supersonic plasma spraying,the obtained TiB2−SiC coating behaves the best comprehensive performance with the porosity,microhardness,bonding strength and resistivity equal to 5.6%,3.57 GPa,18.3 MPa and 10.8 mΩ·cm,respectively.
基金Project(50675081)supported by the National Natural Science Foundation of ChinaProject(20080440940)supported by China Postdoctoral Science Foundation
文摘The theory of functionally graded material(FGM)was applied in the fabrication process of PEN(Positive-Electrolyte-Negative),the core component of solid oxide fuel cell(SOFC).To enhance its electrochemical performance,the functionally graded PEN of planar SOFC was prepared by atmospheric plasma spray(APS).The cross-sectional SEM micrograph and element energy spectrum of the resultant PEN were analyzed.Its interface resistance was also compared with that without the graded layers to investigate the electrochemical performance enhanced by the functionally graded layers.Moreover,a new process, suspension plasma spray(SPS)was applied to preparing the SOFC electrolyte.Higher densification of the coating by SPS,1.61%,is observed,which is helpful to effectively improve its electrical conductivity.The grain size of the electrolyte coating fabricated by SPS is also smaller than that by APS,which is more favourable to obtain the dense electrolyte coatings.To sum up,all mentioned above can prove that the hybrid process of APS and SPS could be a better approach to fabricate the PEN of SOFC stacks,in which APS is for porous electrodes and SPS for dense electrolyte.
基金This work was supported by the National Key R&D Program of China(2018YFB0905602)the Huaneng Group Science and Technology Research Project(HNKJ20-H50)+1 种基金the Beijing Natural Science Foundation Outstanding Youth Science Foundation Project(JQ18009)the National High Level Talents Special Support Plan,and the Tsinghua University Initiative Scientific Research Program.
文摘A solid oxide fuel cell(SOFC)with a liquid antimony anode(LAA)is a potential energy conversion technology for the use of impurity-containing fuels.Atmospheric plasma spraying(APS)technology has become a promising LAASOFC preparation method because of its economy and convenience.In this paper,button SOFCs with different cathode materials and ratios of pore former were prepared by the APS method and were operated at 750C.The effect of the cathode structure on the electrochemical performance of the LAA-SOFCs was analyzed,and an optimized spraying method for LAA-SOFCs was developed.A tubular LAA-SOFC was prepared using the APS method based on the optimized spraying method,and a peak power of 2.5 W was reached.The tubular cell was also measured at a constant current of 2 A for 20 h and was fed with a sulfur-containing fuel to demonstrate its impurity resistance and electrode stability.
文摘Surface coating is a critical procedure in the case of maintenance engineering. Ceramic coating of the wear areas is of the best practice which substantially enhances the Mean Time between Failure (MTBF). EN24 is a commercial grade alloy which is used for various industrial applications like sleeves, nuts, bolts, shafts, etc. EN24 is having comparatively low corrosion resistance, and ceramic coating of the wear and corroding areas of such parts is a best followed practice which highly improves the frequent failures. The coating quality mainly depends on the coating thickness, surface roughness and coating hardness which finally decides the operability. This paper describes an experimental investigation to effectively optimize the Atmospheric Plasma Spray process input parameters of Al<sub>2</sub>O<sub>3</sub>-40% TiO<sub>2</sub> coatings to get the best quality of coating on EN24 alloy steel substrate. The experiments are conducted with an Orthogonal Array (OA) design of experiments (DoE). In the current experiment, critical input parameters are considered and some of the vital output parameters are monitored accordingly and separate mathematical models are generated using regression analysis. The Analytic Hierarchy Process (AHP) method is used to generate weights for the individual objective functions and based on that, a combined objective function is made. An advanced optimization method, Teaching-Learning-Based Optimization algorithm (TLBO), is practically utilized to the combined objective function to optimize the values of input parameters to get the best output parameters. Confirmation tests are also conducted and their output results are compared with predicted values obtained through mathematical models. The dominating effects of Al<sub>2</sub>O<sub>3</sub>-40% TiO<sub>2</sub> spray parameters on output parameters: surface roughness, coating thickness and coating hardness are discussed in detail. It is concluded that the input parameters variation directly affects the characteristics of output parameters and any number of input as well as output parameters can be easily optimized using the current approach.
文摘SS304 is a commercial grade stainless steel which is used for various engineering applications like shafts, guides, jigs, fixtures, etc. Ceramic coating of the wear areas of such parts is a regular practice which significantly enhances the Mean Time Between Failure (MTBF). The final coating quality depends mainly on the coating thickness, surface roughness and hardness which ultimately decides the life. This paper presents an experimental study to effectively optimize the Atmospheric Plasma Spray (APS) process input parameters of Al<sub>2</sub>O<sub>3</sub>-40% TiO2 ceramic coatings to get the best quality of coating on commercial SS304 substrate. The experiments are conducted with a three-level L<sub>18</sub> Orthogonal Array (OA) Design of Experiments (DoE). Critical input parameters considered are: spray nozzle distance, substrate rotating speed, current of the arc, carrier gas flow and coating powder flow rate. The surface roughness, coating thickness and hardness are considered as the output parameters. Mathematical models are generated using regression analysis for individual output parameters. The Analytic Hierarchy Process (AHP) method is applied to generate weights for the individual objective functions and a combined objective function is generated. An advanced optimization method, Teaching-Learning-Based Optimization algorithm (TLBO), is applied to the combined objective function to optimize the values of input parameters to get the best output parameters and confirmation tests are conducted based on that. The significant effects of spray parameters on surface roughness, coating thickness and coating hardness are studied in detail.
基金Project supported by the Ministry of Education,Science Technology(MEST)Korea Industrial Technology Foundation(KOTEF)through the Human Resource Training Project for Regional Innovation
文摘To improve the durability of underwater rotating products,the corrosion characteristics in harsh marine environment were evaluated through various electrochemical experiments on the Al2O3-3TiO2 and CoNiCrAlY coating layers by atmospheric pressure plasma spray coating process.By evaluating the corrosion resistance of these materials,their applicability to environmentally friendly power generation equipment such as blades of tidal current turbines was examined.According to the Tafel analysis for micro-areas including the coating layer,the coating/metal interlayer and the base metal,the Al2O3-3TiO2 coating layer and the CoNiCrAlY coating layer show markedly lower corrosion current density than the base metal.The corrosion current density of the CoNiCrAlY coating layer (9.75316×10-8A/cm2) is about 1.6 times more than that of the Al2O3-3TiO2 coating layer (6.13139×10-8A/cm2).
基金supported by Planned S&T Program of Shenzhen of China (No. JC201105170703A)
文摘Apatite-type lanthanum silicate was successfully synthesized via a solid state re- action protocol at 1400~C in a vacuum for 4 hours. The powder was synthesized faster and at a lower reaction temperature than by conventional solid state reaction methods. The resulting powder was used in the fabrication of a coating deposited by atmospheric plasma spray (APS) technology. The microstructure of the coating was analyzed by X-ray diffraction and scanning electron microscopy. Heat treatment was found to fully crystallize the coating, increasing its den-sity. The ionic conductivity of the apatite coating was 0.39 (0.054) mS/cm at 850 (700) ℃, and its activation energy was 0.67 eV.
基金supported by the National Nature Science Foundation of China (Nos. 52031010, U1837201)the Chinese Scholarship Council (CSC) for support of the scholarship。