Non-thermal plasmas under atmospheric pressure are of great interest in polymer surface processing because of their convenience, effectiveness and low cost. In this paper, the treatment of Polyethylene terephthalate (...Non-thermal plasmas under atmospheric pressure are of great interest in polymer surface processing because of their convenience, effectiveness and low cost. In this paper, the treatment of Polyethylene terephthalate (PET) film surface for improving hydrophilicity using the non-thermal plasma generated by atmospheric pressure glow discharge (APGD) in air is conducted. The discharge characteristics of APGD are shown by measurement of their electrical discharge parameters and observation of light-emission phenomena, and the surface properties of PET before and after the APGD treatment are studied using contact angle measurement, x-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). It is found that the APGD is homogeneous and stable in the whole gas gap, which differs from the commonly filamentary dielectric barrier discharge (DBD). A short time (several seconds) APGD treatment can modify the surface characteristics of PET film markedly and uniformly. After 10 s APGD treatment, the展开更多
The glow discharge in pure helium at atmospheric pressure, controlled by a dielectric barrier between coaxial electrodes, is investigated based on a one-dimensional self-consistent fluid model. By solving the continui...The glow discharge in pure helium at atmospheric pressure, controlled by a dielectric barrier between coaxial electrodes, is investigated based on a one-dimensional self-consistent fluid model. By solving the continuity equations for electrons, ions, and excited atoms, with the current conservation equation and the electric field profile, the time evolution of the discharge current, gas voltage and the surface density of charged particles on the dielectric barrier are calculated. The simulation results show that the peak values of the discharge current, gas voltage and electric field in the first half period are asymmetric to the second half. When the current reaches its positive or negative maximum, the electric field profile, and the electron and ion densities represent similar properties to the typical glow discharge at low pressures. Obviously there exist a cathode fall, a negative glow region, and a positive column. Effects of the barrier position in between the two coaxial electrodes and the discharge gap width on discharge current characteristics are also analysed. The result indicates that, in the case when the dielectric covering the outer electrode only, the gas is punctured earlier during the former half period and later during the latter half period than other cases, also the current peak value is higher, and the difference of pulse width between the two half periods is more obvious. On reducing the gap width, the multiple current pulse discharge happens.展开更多
Atmospheric pressure glow discharges were generated in an air gap between a needle cathode and a water anode. Through changing the ballast resistor and gas gap width between the electrodes, it has been found that the ...Atmospheric pressure glow discharges were generated in an air gap between a needle cathode and a water anode. Through changing the ballast resistor and gas gap width between the electrodes, it has been found that the discharges are in normal glow regime judged from the currentvoltage characteristics and visualization of the discharges. Results indicate that the diameter of the positive column increases with increasing discharge current or increasing gap width. Optical emission spectroscopy is used to calculate the electron temperature and vibrational temperature. Both the electron temperature and the vibrational temperature increases with increasing discharge current or increasing gap width. Spatially resolved measurements show that the maxima of electron temperature and vibrational temperature appeared in the vicinity of the needle cathode.展开更多
Usually, the electrical breakdown of dielectric barrier discharge (DBD) at atmo-spheric pressure leads to a filamentary non-homogeneous discharge. However, it is also possible to obtain a diffuse DBD in homogeneous fo...Usually, the electrical breakdown of dielectric barrier discharge (DBD) at atmo-spheric pressure leads to a filamentary non-homogeneous discharge. However, it is also possible to obtain a diffuse DBD in homogeneous form, called atmospheric pressure glow discharge (APGD). We obtained a uniform APGD in helium and in the mixture of argon with alcohol, and studied the electrical characteristics of helium APGD. It is found that the relationship between discharge current and source frequency is different depending on the difference in gas gap when the applied voltage is kept constant. The discharge current shows an increasing trend with the increased frequency when gas gap is 0.8 cm, but the discharge current tends to decrease with the increased frequency when the gas gap increases. The discharge current always increases with the increased applied voltage when the source frequency is kept constant. We also observed a glow-like discharge in nitrogen at atmospheric pressure.展开更多
Polytetrafluoroethylene films are treated by room temperature helium atmospheric pressure plasma plumes, which are generated with a home-made single liquid electrode plasma device. After plasma treatment, the water co...Polytetrafluoroethylene films are treated by room temperature helium atmospheric pressure plasma plumes, which are generated with a home-made single liquid electrode plasma device. After plasma treatment, the water contact angle of polytetrafiuoroethylene fihn drops from 114° to 46° and the surface free energy increases from 22.0 mJ/m2 to 59.1 mJ/m2. The optical emission spectrum indicates that there are reactive species such as O2+, O and He in the plasma plume. After plasma treatment, a highly crosslinking structure is formed on the fihn surface and the oxygen element is incorporated into the film surface in the forms of C O-C-, -C=O, and O C=O groups. Over a period of 10 days, the contact angle of the treated film is recovered by only about 10°, which indicates that the plasma surface modification is stable with time.展开更多
To discuss the modes of dielectric barrier discharge(DBD) between needle-to-plane electrodes in air,DBD is generated and observed on a needle-to-plane device at atmospheric pressure air.Fast images of the DBD are take...To discuss the modes of dielectric barrier discharge(DBD) between needle-to-plane electrodes in air,DBD is generated and observed on a needle-to-plane device at atmospheric pressure air.Fast images of the DBD are taken by using a charge couple device(CCD) cinema with a macro lens,while the electrical and photo-electricity waveforms of the DBD are recorded.The current waveforms show that under an applied voltage of 3 kV,there are numerous short current pulses in both positive and negative half-periods of discharges.However,under 6 kV,there are still the numerous short current pulses in the positive half-periods,but only one wide current pulse in each negative half-period.This difference is also found in the photoelectric signals.The streamer,corona and glow discharges are observed from the images of the discharges at different applied voltages.The structure of glow discharge in the negative period is exactly the same as that of the low pressure glow discharge.However,in the positive period of discharge there is always a streamer.In the negative period of discharge,while the applied voltage increases,the transition from corona to glow discharge is observed.The progress of a transition between streamer and glow discharge at 6 kV during one period is analyzed.The glow discharge appearance is determined by two factors: the discharge current is limited to a certain extent by the dielectric layer; the charges deposited on the dielectric layer during the last half period enhance the intensity of the electric field.At an insufficient applied voltage,the cathode drop leads to no glow discharge,but Trichel pulses.展开更多
The dielectric barrier discharge characteristics in helium at atmospheric pressure are simulated based on a one- dimensional fluid model. Under some discharge conditions, the results show that one discharge pulse per ...The dielectric barrier discharge characteristics in helium at atmospheric pressure are simulated based on a one- dimensional fluid model. Under some discharge conditions, the results show that one discharge pulse per half voltage cycle usually appears when the amplitude of external voltage is low, while a glow-like discharge occurs at high voltage. For the one discharge pulse per half voltage cycle, the maximum of electron density appears near the anode at the beginning of the discharge, which corresponds to a Townsend discharge mode. The maxima of the electron density and the intensity of electric field appear in the vicinity of the cathode when the discharge current increases to some extent, which indicates the formation of a cathode-fall region. Therefore, the discharge has a transition from the Townsend mode to the glow discharge mode during one discharge pulse, which is consistent with previous experimental results.展开更多
Atmospheric pressure glow discharge(APGD) plasma in air has high application value. In this paper, the methods of generating APGD plasma in air are discussed, and the characteristics of dielectric barrier discharge...Atmospheric pressure glow discharge(APGD) plasma in air has high application value. In this paper, the methods of generating APGD plasma in air are discussed, and the characteristics of dielectric barrier discharge(DBD) in non-uniform electric field are studied. It makes sure that APGD in air is formed by DBD in alternating current electric field with using the absorbing electron capacity of electret materials to provide initial electrons and to end the discharge progress. Through designing electric field to form two-dimensional space varying electric field and three-dimensional space varying electric field, the development of electron avalanches in airgap is suppressed effectively and a large space of APGD plasma in air is generated. Further,through combining electrode structures, a large area of APGD plasma in air is generated. On the other hand, by using the method of increasing the density of initial electrons, millimeter-gap glow discharge in atmospheric pressure air is formed, and a maximum gap distance between electrodes is 8 mm. By using the APGD plasma surface treatment device composed of contact electrodes, the surface modification of high polymer materials such as aramid fiber and polyester are studied and good effect of modifications is obtained. The present paper provides references for the researchers of industrial applications of plasma.展开更多
Pattern formation is a very interesting phenomenon formed above a water anode in atmospheric pressure glow discharge.Up to now,concentric-ring patterns only less than four rings have been observed in experiments.In th...Pattern formation is a very interesting phenomenon formed above a water anode in atmospheric pressure glow discharge.Up to now,concentric-ring patterns only less than four rings have been observed in experiments.In this work,atmospheric pressure glow discharge above a water anode is conducted to produce diversified concentric-ring patterns.Results indicate that as time elapses,the number of concentric rings increases continuously and up to five rings have been found in the concentric-ring patterns.Moreover,the ring number increases continuously with increasing discharge current.The electrical conductivity of the anode plays an important role in the transition of the concentric patterns due to its positive relation with ionic strength.Hence,the electrical conductivity of the water anode is investigated as a function of time and discharge current.From optical emission spectrum,gas temperature and intensity ratio related with density and temperature of electron have been calculated.The various concentric-ring patterns mentioned above have been simulated at last with an autocatalytic reaction model.展开更多
The existence of two diffe1:ent discharge modes has been verified in an rf (radio-frequency) atmospheric pressure glow discharge (APGD) by Shi [J. Appl. Phys. 97, 023306 (2005)]. In the first mode, referred to ...The existence of two diffe1:ent discharge modes has been verified in an rf (radio-frequency) atmospheric pressure glow discharge (APGD) by Shi [J. Appl. Phys. 97, 023306 (2005)]. In the first mode, referred to as a mode, the discharge current density is relatively low and the bulk plasma electrons acquire the energy due to the sheath expansion. In the second mode, termed γ mode, the discharge current density is relatively high, the secondary electrons emitted by cathodc under ion bombardment in the cathode sheath region play an important role in sustaining the discharge. In this paper, a one-dimensional self-consistent fluid model for rf APGDs is used to simulate the discharge mechanisms in the mode in helium discharge between two parallel metallic planar electrodes. The results show that as the applied voltage increases, the discharge current becomes greater and the plasma density correspondingly increases, consequentially the discharge transits from the a mode into the γ mode. The high collisionality of the APGD plasma results in significant drop of discharge potential across the sheath region, and the electron Joule heating and the electron collisional energy loss reach their maxima in the region. The validity of the simulation is checked with the available experimental and numerical data.展开更多
A one-dimensional,self-consistent fluid model is developed for a computational investigation on discharge characteristics and dynamics of radio frequency(RF) glow discharges in atmospheric argon,which are demonstrated...A one-dimensional,self-consistent fluid model is developed for a computational investigation on discharge characteristics and dynamics of radio frequency(RF) glow discharges in atmospheric argon,which are demonstrated through the spatial and temporal profiles of plasma species,electric field,and mean electron energy.Furthermore,in the discharge current density range from 7.1 mA/cm2 to 119.5 mA/cm2,different discharge operation modes of α and γ are indicated by changing differential conductivity of voltage-current characteristics and sheath dynamics in terms of sheath voltage and sheath thickness.展开更多
Atmospheric pressure abnormal glow discharge (APAGD) was carried out simply with a transformer of 1 : 500 driven by a alternating current with a frequency of 50 Hz. Typical stable discharge parameters, namely volta...Atmospheric pressure abnormal glow discharge (APAGD) was carried out simply with a transformer of 1 : 500 driven by a alternating current with a frequency of 50 Hz. Typical stable discharge parameters, namely voltage of 400 V to 850 V and current of 60 mA to 110 mA were measured by oscillograph. Simulation of the discharge process suggested that the stable discharge was supported by the impedance from the secondary coil of the transformer, which offered a negative feedback to prevent the discharge from turning into an arc. An interpretation was given for the oscillogram of the sinuous discharge current and square voltage. Furthermore, the electron temperature and electron density averaged in the discharge channel of APAGD were estimated.展开更多
A pseudoglow discharge behaviour is achieved at a 2.0-mm dielectric-dielectric electrode gap in pure helium under atmospheric pressure. An experimental study of the pseudoglow discharges is presented. The electrical c...A pseudoglow discharge behaviour is achieved at a 2.0-mm dielectric-dielectric electrode gap in pure helium under atmospheric pressure. An experimental study of the pseudoglow discharges is presented. The electrical characteristics and the discharge photos of the pseudoglow discharges are analyzed and discussed. The current-voltage parameters of the pseudoglow dis- charges are considered in regard to the influence on their behaviour.展开更多
In order to better understand the physical mechanism of sub-microsecond pulsed glow discharge with bare metal electrodes,using a one-dimensional self-consistent fluid model,the properties of the discharge at atmospher...In order to better understand the physical mechanism of sub-microsecond pulsed glow discharge with bare metal electrodes,using a one-dimensional self-consistent fluid model,the properties of the discharge at atmospheric pressure are numerically studied.The results show that,a discharge without dielectric layers,i.e.a barrier free discharge,is extinguished only with the decrease of the applied voltage.Only one positive discharge event occurs at the slope of the pulsed voltage.A stable glow of barrier free discharge can be achieved only in short durations of the pulsed voltage.The barrier free discharge always starts with a subnormal glow discharge and then evolves into a normal glow discharge.Moreover,to control the discharge stabilization better,the effects of pulse repetition frequency,pulse duration,rising(front) and falling(slope) times on the discharge characteristics are investigated systematically.It is found that the discharge is comparatively more sensitive to the repetition frequency and the pulse duration,while little affected by the rising and falling times.展开更多
In this paper,the influence of ammonia admixture on argon discharge properties is investigated.Electrical measurements,as well as ten-nanoseconds-exposure photographs taken by an intensified charge-coupled device(ICCD...In this paper,the influence of ammonia admixture on argon discharge properties is investigated.Electrical measurements,as well as ten-nanoseconds-exposure photographs taken by an intensified charge-coupled device(ICCD)camera,are employed to confirm the existence of atmospheric pressure glow discharge(APGD)in Ar/NH3mixture.The breakdown voltage and transition voltage between APGD and filamentary discharge are studied at various ammonia concentrations.The results show that a small amount of NH3can lead to APGD due to the Penning ionization of NH3molecules by metastable argon,and the breakdown voltage increases with the growth in NH3concentrations owing to the electronegative feature of NH3.The optical emission spectrum of Ar/NH3APGD is analyzed.Besides,gas temperature is estimated at 327 K by the diagnoses of the OH(A-X)(0,0)band of the spectrum.展开更多
During discharge, appropriately changing the development paths of electron avalanches and increasing the number of initial electrons can effectively inhibit the formation of filamentary discharge. Based on the aforeme...During discharge, appropriately changing the development paths of electron avalanches and increasing the number of initial electrons can effectively inhibit the formation of filamentary discharge. Based on the aforementioned phenomenon, we propose a method of using microdischarge electrodes to produce a macroscopic discharge phenomenon. In the form of an asymmetric structure composed of a carbon fiber electrode, an electrode structure of carbon fiber spiral-contact type is designed to achieve an atmospheric pressure glow discharge in air, which is characterized by low discharge voltage, low energy consumption, good diffusion and less ozone generation.展开更多
An improved self-consistent, multi-component, and one-dimensional plasma model for simulating atmospheric pressure argon glow discharge is presented. In the model, both the plasma hydrodynamics model and chemical mode...An improved self-consistent, multi-component, and one-dimensional plasma model for simulating atmospheric pressure argon glow discharge is presented. In the model, both the plasma hydrodynamics model and chemical model are considered. The numerical simulation is carried out for parallel-plate geometry with a separation of 0.06 cm. The results show that Ar* plays a major role in the discharge, which is mainly produced by ground state excitation reaction. The electron temperature reaches its maximum in the cathode sheath but maintains a low value (0.23 eV) in bulk plasma. Elastic collision is the dominant volumetric electron energy loss in atmosphere argon glow discharge, which is negligible in low pressure argon glow discharge. The metastable step-wise ionization is the main mechanism for electron production to sustain the discharge. However, the highest contribution to electron production rate is ground state ionization reaction. The bremsstrahlung power density is related to electric voltage. With the increase of the electric voltage, the bremsstrahlung power density increases, namely, the strength of ultraviolet radiation spectrum enhances in the cathode sheath.展开更多
A one-dimensional fluid model for homogeneous atmospheric pressure barrier discharges in helium is presented by considering elementary processes of excitation and ionization including a metastable atom effect. Using t...A one-dimensional fluid model for homogeneous atmospheric pressure barrier discharges in helium is presented by considering elementary processes of excitation and ionization including a metastable atom effect. Using this model we investigate the behaviours of the helium metastable atoms in discharges as well as their influence on the discharge characteristics. It is shown that the metastable atoms with a relatively high concentration during the discharge are mainly produced in the active phase of the discharge and dissolved in the off phase. It is also found that the metastable atom collisions can not only provide seed electrons for discharges but also influence the concentration of ions. A reduction of matestable atom density results in a drop in the charged particle densities and causes a qualitative change in the discharge patterns.展开更多
A comparative study of radio-frequency atmospheric pressure glow discharge(rf APGD)generated in helium with and without dielectric electrodes to investigate the effect of electrodes insulation on electrical features o...A comparative study of radio-frequency atmospheric pressure glow discharge(rf APGD)generated in helium with and without dielectric electrodes to investigate the effect of electrodes insulation on electrical features of APGD is presented. In the α mode, both the rf APGDs remain volumetric, stable and uniform. In the γ mode, the APGD without dielectric electrodes shrinks into a constricted plasma column whereas APGD with dielectric electrodes remains stable and retains the same volume without plasma constriction even at higher densities of discharge current. A comparison of electrical features of both rf APGDs in normal and abnormal glow discharge regimes is presented. In both APGDs with and without dielectric electrodes,impedance measurements have been performed and compared with equivalent circuit models.The measured impedance data is found to be in good agreement with simulated data.展开更多
This paper presents the fabrication and a spectroscopic study of a stable radio- frequency dielectric barrier discharge (RF DBD) in Ar with a novel dielectric, anodic alumina, at atmospheric pressure. Dielectric ele...This paper presents the fabrication and a spectroscopic study of a stable radio- frequency dielectric barrier discharge (RF DBD) in Ar with a novel dielectric, anodic alumina, at atmospheric pressure. Dielectric electrodes are fabricated from commercially available low cost impure aluminum strips by a two-step anodization process in 0.3 M solution of oxalic acid. The discharge is found to be stable with excellent spatial uniformity for the RF input power range of 30~80 W. Excitation and rotational temperatures measured in the experiment range of 1472~3255 K and 434~484 K, respectively, as the input power changes from 30 W to 80 W. These temperature ranges are suitable for surface modification applications.展开更多
文摘Non-thermal plasmas under atmospheric pressure are of great interest in polymer surface processing because of their convenience, effectiveness and low cost. In this paper, the treatment of Polyethylene terephthalate (PET) film surface for improving hydrophilicity using the non-thermal plasma generated by atmospheric pressure glow discharge (APGD) in air is conducted. The discharge characteristics of APGD are shown by measurement of their electrical discharge parameters and observation of light-emission phenomena, and the surface properties of PET before and after the APGD treatment are studied using contact angle measurement, x-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). It is found that the APGD is homogeneous and stable in the whole gas gap, which differs from the commonly filamentary dielectric barrier discharge (DBD). A short time (several seconds) APGD treatment can modify the surface characteristics of PET film markedly and uniformly. After 10 s APGD treatment, the
基金Project supported by the National Natural Science Foundation of China (Grant Nos 50537020 and 50528707).
文摘The glow discharge in pure helium at atmospheric pressure, controlled by a dielectric barrier between coaxial electrodes, is investigated based on a one-dimensional self-consistent fluid model. By solving the continuity equations for electrons, ions, and excited atoms, with the current conservation equation and the electric field profile, the time evolution of the discharge current, gas voltage and the surface density of charged particles on the dielectric barrier are calculated. The simulation results show that the peak values of the discharge current, gas voltage and electric field in the first half period are asymmetric to the second half. When the current reaches its positive or negative maximum, the electric field profile, and the electron and ion densities represent similar properties to the typical glow discharge at low pressures. Obviously there exist a cathode fall, a negative glow region, and a positive column. Effects of the barrier position in between the two coaxial electrodes and the discharge gap width on discharge current characteristics are also analysed. The result indicates that, in the case when the dielectric covering the outer electrode only, the gas is punctured earlier during the former half period and later during the latter half period than other cases, also the current peak value is higher, and the difference of pulse width between the two half periods is more obvious. On reducing the gap width, the multiple current pulse discharge happens.
基金supported by National Natural Science Foundation of China(Nos.10805013 and 51077035)Funds for Distinguished Young Scientists of Hebei Province,China(No.A2012201045)+2 种基金the Key Project of Chinese Ministry of Education(No.210014)the Natural Science Foundation of Hebei Province(No.A2011201132)Hebei Province Department of Education for Outstanding Youth Project of China(Y2011120)
文摘Atmospheric pressure glow discharges were generated in an air gap between a needle cathode and a water anode. Through changing the ballast resistor and gas gap width between the electrodes, it has been found that the discharges are in normal glow regime judged from the currentvoltage characteristics and visualization of the discharges. Results indicate that the diameter of the positive column increases with increasing discharge current or increasing gap width. Optical emission spectroscopy is used to calculate the electron temperature and vibrational temperature. Both the electron temperature and the vibrational temperature increases with increasing discharge current or increasing gap width. Spatially resolved measurements show that the maxima of electron temperature and vibrational temperature appeared in the vicinity of the needle cathode.
基金This work was supported by the National Science Foundation of China No.19835030.
文摘Usually, the electrical breakdown of dielectric barrier discharge (DBD) at atmo-spheric pressure leads to a filamentary non-homogeneous discharge. However, it is also possible to obtain a diffuse DBD in homogeneous form, called atmospheric pressure glow discharge (APGD). We obtained a uniform APGD in helium and in the mixture of argon with alcohol, and studied the electrical characteristics of helium APGD. It is found that the relationship between discharge current and source frequency is different depending on the difference in gas gap when the applied voltage is kept constant. The discharge current shows an increasing trend with the increased frequency when gas gap is 0.8 cm, but the discharge current tends to decrease with the increased frequency when the gas gap increases. The discharge current always increases with the increased applied voltage when the source frequency is kept constant. We also observed a glow-like discharge in nitrogen at atmospheric pressure.
基金Project supported by the State Key Program of National Natural Science Foundation of China (Grant No. 10735090)the Young Scientist Fund of the National Natural Science Foundation of China (Grant No. 11005151)
文摘Polytetrafluoroethylene films are treated by room temperature helium atmospheric pressure plasma plumes, which are generated with a home-made single liquid electrode plasma device. After plasma treatment, the water contact angle of polytetrafiuoroethylene fihn drops from 114° to 46° and the surface free energy increases from 22.0 mJ/m2 to 59.1 mJ/m2. The optical emission spectrum indicates that there are reactive species such as O2+, O and He in the plasma plume. After plasma treatment, a highly crosslinking structure is formed on the fihn surface and the oxygen element is incorporated into the film surface in the forms of C O-C-, -C=O, and O C=O groups. Over a period of 10 days, the contact angle of the treated film is recovered by only about 10°, which indicates that the plasma surface modification is stable with time.
基金supported by National High-tech Research and Development Program of China(863 Program)(2012AA062609)National Twelfth-five Year Science and Technology Supporting Program of China(2013BAC06B02)+1 种基金Special Fund for Marine Scientific Research in the Public Interest(201305027-5)Fundamental Research Fund for the Central Universities(3132013316)
文摘To discuss the modes of dielectric barrier discharge(DBD) between needle-to-plane electrodes in air,DBD is generated and observed on a needle-to-plane device at atmospheric pressure air.Fast images of the DBD are taken by using a charge couple device(CCD) cinema with a macro lens,while the electrical and photo-electricity waveforms of the DBD are recorded.The current waveforms show that under an applied voltage of 3 kV,there are numerous short current pulses in both positive and negative half-periods of discharges.However,under 6 kV,there are still the numerous short current pulses in the positive half-periods,but only one wide current pulse in each negative half-period.This difference is also found in the photoelectric signals.The streamer,corona and glow discharges are observed from the images of the discharges at different applied voltages.The structure of glow discharge in the negative period is exactly the same as that of the low pressure glow discharge.However,in the positive period of discharge there is always a streamer.In the negative period of discharge,while the applied voltage increases,the transition from corona to glow discharge is observed.The progress of a transition between streamer and glow discharge at 6 kV during one period is analyzed.The glow discharge appearance is determined by two factors: the discharge current is limited to a certain extent by the dielectric layer; the charges deposited on the dielectric layer during the last half period enhance the intensity of the electric field.At an insufficient applied voltage,the cathode drop leads to no glow discharge,but Trichel pulses.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10805013 and 51077035)the Funds for Distinguished Young Scientists of Hebei University, China (Grant No. A2012201045)+2 种基金the Key Project of Ministry of Education of China (Grant No. 210014)the Natural Science Foundation of Hebei province, China (Grant Nos. A2009000149 and A2011201132)the Outstanding Youth Project of Education Department of China (Grant No. Y2011120)
文摘The dielectric barrier discharge characteristics in helium at atmospheric pressure are simulated based on a one- dimensional fluid model. Under some discharge conditions, the results show that one discharge pulse per half voltage cycle usually appears when the amplitude of external voltage is low, while a glow-like discharge occurs at high voltage. For the one discharge pulse per half voltage cycle, the maximum of electron density appears near the anode at the beginning of the discharge, which corresponds to a Townsend discharge mode. The maxima of the electron density and the intensity of electric field appear in the vicinity of the cathode when the discharge current increases to some extent, which indicates the formation of a cathode-fall region. Therefore, the discharge has a transition from the Townsend mode to the glow discharge mode during one discharge pulse, which is consistent with previous experimental results.
文摘Atmospheric pressure glow discharge(APGD) plasma in air has high application value. In this paper, the methods of generating APGD plasma in air are discussed, and the characteristics of dielectric barrier discharge(DBD) in non-uniform electric field are studied. It makes sure that APGD in air is formed by DBD in alternating current electric field with using the absorbing electron capacity of electret materials to provide initial electrons and to end the discharge progress. Through designing electric field to form two-dimensional space varying electric field and three-dimensional space varying electric field, the development of electron avalanches in airgap is suppressed effectively and a large space of APGD plasma in air is generated. Further,through combining electrode structures, a large area of APGD plasma in air is generated. On the other hand, by using the method of increasing the density of initial electrons, millimeter-gap glow discharge in atmospheric pressure air is formed, and a maximum gap distance between electrodes is 8 mm. By using the APGD plasma surface treatment device composed of contact electrodes, the surface modification of high polymer materials such as aramid fiber and polyester are studied and good effect of modifications is obtained. The present paper provides references for the researchers of industrial applications of plasma.
基金financially supported by National Natural Science Foundation of China(Nos.11875121 and 51977057)Natural Science Interdisciplinary Research Program of Hebei University(Nos.DXK201908 and DXK202011)+2 种基金Natural Science Foundation of Hebei Province,China(Nos.A2020201025 and A2019201100)the financial support from Post-Graduate’s Innovation Fund Project of Hebei Province(Nos.CXZZBS2019023 and CXZZBS2019029)Post-Graduate’s Innovation Fund Project of Hebei University(Nos.HBU2021ss063 and HBU2021bs011)。
文摘Pattern formation is a very interesting phenomenon formed above a water anode in atmospheric pressure glow discharge.Up to now,concentric-ring patterns only less than four rings have been observed in experiments.In this work,atmospheric pressure glow discharge above a water anode is conducted to produce diversified concentric-ring patterns.Results indicate that as time elapses,the number of concentric rings increases continuously and up to five rings have been found in the concentric-ring patterns.Moreover,the ring number increases continuously with increasing discharge current.The electrical conductivity of the anode plays an important role in the transition of the concentric patterns due to its positive relation with ionic strength.Hence,the electrical conductivity of the water anode is investigated as a function of time and discharge current.From optical emission spectrum,gas temperature and intensity ratio related with density and temperature of electron have been calculated.The various concentric-ring patterns mentioned above have been simulated at last with an autocatalytic reaction model.
基金Project supported by the National Natural Science Foundation of China(Grant Nos 50528707 and 50537020).
文摘The existence of two diffe1:ent discharge modes has been verified in an rf (radio-frequency) atmospheric pressure glow discharge (APGD) by Shi [J. Appl. Phys. 97, 023306 (2005)]. In the first mode, referred to as a mode, the discharge current density is relatively low and the bulk plasma electrons acquire the energy due to the sheath expansion. In the second mode, termed γ mode, the discharge current density is relatively high, the secondary electrons emitted by cathodc under ion bombardment in the cathode sheath region play an important role in sustaining the discharge. In this paper, a one-dimensional self-consistent fluid model for rf APGDs is used to simulate the discharge mechanisms in the mode in helium discharge between two parallel metallic planar electrodes. The results show that as the applied voltage increases, the discharge current becomes greater and the plasma density correspondingly increases, consequentially the discharge transits from the a mode into the γ mode. The high collisionality of the APGD plasma results in significant drop of discharge potential across the sheath region, and the electron Joule heating and the electron collisional energy loss reach their maxima in the region. The validity of the simulation is checked with the available experimental and numerical data.
基金National Natural Science Foundations of China (No. 10835004,No. 10905010)Shanghai Shuguang Program,China (No.08SG31)
文摘A one-dimensional,self-consistent fluid model is developed for a computational investigation on discharge characteristics and dynamics of radio frequency(RF) glow discharges in atmospheric argon,which are demonstrated through the spatial and temporal profiles of plasma species,electric field,and mean electron energy.Furthermore,in the discharge current density range from 7.1 mA/cm2 to 119.5 mA/cm2,different discharge operation modes of α and γ are indicated by changing differential conductivity of voltage-current characteristics and sheath dynamics in terms of sheath voltage and sheath thickness.
基金National Natural Science Foundation of China(No.10475060)
文摘Atmospheric pressure abnormal glow discharge (APAGD) was carried out simply with a transformer of 1 : 500 driven by a alternating current with a frequency of 50 Hz. Typical stable discharge parameters, namely voltage of 400 V to 850 V and current of 60 mA to 110 mA were measured by oscillograph. Simulation of the discharge process suggested that the stable discharge was supported by the impedance from the secondary coil of the transformer, which offered a negative feedback to prevent the discharge from turning into an arc. An interpretation was given for the oscillogram of the sinuous discharge current and square voltage. Furthermore, the electron temperature and electron density averaged in the discharge channel of APAGD were estimated.
文摘A pseudoglow discharge behaviour is achieved at a 2.0-mm dielectric-dielectric electrode gap in pure helium under atmospheric pressure. An experimental study of the pseudoglow discharges is presented. The electrical characteristics and the discharge photos of the pseudoglow discharges are analyzed and discussed. The current-voltage parameters of the pseudoglow dis- charges are considered in regard to the influence on their behaviour.
文摘In order to better understand the physical mechanism of sub-microsecond pulsed glow discharge with bare metal electrodes,using a one-dimensional self-consistent fluid model,the properties of the discharge at atmospheric pressure are numerically studied.The results show that,a discharge without dielectric layers,i.e.a barrier free discharge,is extinguished only with the decrease of the applied voltage.Only one positive discharge event occurs at the slope of the pulsed voltage.A stable glow of barrier free discharge can be achieved only in short durations of the pulsed voltage.The barrier free discharge always starts with a subnormal glow discharge and then evolves into a normal glow discharge.Moreover,to control the discharge stabilization better,the effects of pulse repetition frequency,pulse duration,rising(front) and falling(slope) times on the discharge characteristics are investigated systematically.It is found that the discharge is comparatively more sensitive to the repetition frequency and the pulse duration,while little affected by the rising and falling times.
基金Project supported by China National Fund for Distinguished Young Scientists(51125029)
文摘In this paper,the influence of ammonia admixture on argon discharge properties is investigated.Electrical measurements,as well as ten-nanoseconds-exposure photographs taken by an intensified charge-coupled device(ICCD)camera,are employed to confirm the existence of atmospheric pressure glow discharge(APGD)in Ar/NH3mixture.The breakdown voltage and transition voltage between APGD and filamentary discharge are studied at various ammonia concentrations.The results show that a small amount of NH3can lead to APGD due to the Penning ionization of NH3molecules by metastable argon,and the breakdown voltage increases with the growth in NH3concentrations owing to the electronegative feature of NH3.The optical emission spectrum of Ar/NH3APGD is analyzed.Besides,gas temperature is estimated at 327 K by the diagnoses of the OH(A-X)(0,0)band of the spectrum.
基金Supported by the National Natural Science Foundation of China under Grant No 51577011
文摘During discharge, appropriately changing the development paths of electron avalanches and increasing the number of initial electrons can effectively inhibit the formation of filamentary discharge. Based on the aforementioned phenomenon, we propose a method of using microdischarge electrodes to produce a macroscopic discharge phenomenon. In the form of an asymmetric structure composed of a carbon fiber electrode, an electrode structure of carbon fiber spiral-contact type is designed to achieve an atmospheric pressure glow discharge in air, which is characterized by low discharge voltage, low energy consumption, good diffusion and less ozone generation.
基金supported by the Major State Basic Research Development Program of China (973 Program) (No. 2011CB20941)Scientific Research Foundation of State Key Lab. of Power Transmission Equipment and System Security of China (No. 2007DA10512709102)+1 种基金National Natural Science Foundation of China (No. 51007096)the Fundamental Research Funds for the Central Universities of China(No. CDJZR10150001)
文摘An improved self-consistent, multi-component, and one-dimensional plasma model for simulating atmospheric pressure argon glow discharge is presented. In the model, both the plasma hydrodynamics model and chemical model are considered. The numerical simulation is carried out for parallel-plate geometry with a separation of 0.06 cm. The results show that Ar* plays a major role in the discharge, which is mainly produced by ground state excitation reaction. The electron temperature reaches its maximum in the cathode sheath but maintains a low value (0.23 eV) in bulk plasma. Elastic collision is the dominant volumetric electron energy loss in atmosphere argon glow discharge, which is negligible in low pressure argon glow discharge. The metastable step-wise ionization is the main mechanism for electron production to sustain the discharge. However, the highest contribution to electron production rate is ground state ionization reaction. The bremsstrahlung power density is related to electric voltage. With the increase of the electric voltage, the bremsstrahlung power density increases, namely, the strength of ultraviolet radiation spectrum enhances in the cathode sheath.
基金supported by the National Natural Science Foundation of China (Nos. 50537020, 50528707)
文摘A one-dimensional fluid model for homogeneous atmospheric pressure barrier discharges in helium is presented by considering elementary processes of excitation and ionization including a metastable atom effect. Using this model we investigate the behaviours of the helium metastable atoms in discharges as well as their influence on the discharge characteristics. It is shown that the metastable atoms with a relatively high concentration during the discharge are mainly produced in the active phase of the discharge and dissolved in the off phase. It is also found that the metastable atom collisions can not only provide seed electrons for discharges but also influence the concentration of ions. A reduction of matestable atom density results in a drop in the charged particle densities and causes a qualitative change in the discharge patterns.
基金partially supported by the Higher Education Commission Project No. 1852
文摘A comparative study of radio-frequency atmospheric pressure glow discharge(rf APGD)generated in helium with and without dielectric electrodes to investigate the effect of electrodes insulation on electrical features of APGD is presented. In the α mode, both the rf APGDs remain volumetric, stable and uniform. In the γ mode, the APGD without dielectric electrodes shrinks into a constricted plasma column whereas APGD with dielectric electrodes remains stable and retains the same volume without plasma constriction even at higher densities of discharge current. A comparison of electrical features of both rf APGDs in normal and abnormal glow discharge regimes is presented. In both APGDs with and without dielectric electrodes,impedance measurements have been performed and compared with equivalent circuit models.The measured impedance data is found to be in good agreement with simulated data.
基金supported partially by the Higher Education Commission Project No.794 and Project No.1852 of Pakistan
文摘This paper presents the fabrication and a spectroscopic study of a stable radio- frequency dielectric barrier discharge (RF DBD) in Ar with a novel dielectric, anodic alumina, at atmospheric pressure. Dielectric electrodes are fabricated from commercially available low cost impure aluminum strips by a two-step anodization process in 0.3 M solution of oxalic acid. The discharge is found to be stable with excellent spatial uniformity for the RF input power range of 30~80 W. Excitation and rotational temperatures measured in the experiment range of 1472~3255 K and 434~484 K, respectively, as the input power changes from 30 W to 80 W. These temperature ranges are suitable for surface modification applications.