The effects of radio frequency(RF)atmospheric pressure(AP)He/H_(2)plasma and thermal treatment on the hydrogenation of TiO_(2)thin films were investigated and compared in this work.The color of the original TiO_(2)fil...The effects of radio frequency(RF)atmospheric pressure(AP)He/H_(2)plasma and thermal treatment on the hydrogenation of TiO_(2)thin films were investigated and compared in this work.The color of the original TiO_(2)film changes from white to black after being hydrogenated in He/H_(2)plasma at160 W(gas temperature~381℃)within 5 min,while the color of the thermally treated TiO_(2)film did not change significantly even in pure H_(2)or He/H_(2)atmosphere with higher temperature(470℃)and longer time(30 min).This indicated that a more effective hydrogenation reaction happened through RF AP He/H_(2)plasma treatment than through pure H_(2)or He/H_(2)thermal treatment.The color change of TiO_(2)film was measured based on the Commission Internationale d’Eclairage L*a*b*color space system.Hydrogenated TiO_(2)film displayed improved visible light absorption with increased plasma power.The morphology of the cauliflower-like nanoparticles of the TiO_(2)film surface remained unchanged after plasma processing.X-ray photoelectron spectroscopy results showed that the contents of Ti3+species and Ti-OH bonds in the plasma-hydrogenated black TiO_(2)increased compared with those in the thermally treated TiO_(2).X-ray diffraction(XRD)patterns and Raman spectra indicated that plasma would destroy the crystal structure of the TiO_(2)surface layer,while thermal annealing would increase the overall crystallinity.The different trends of XRD and Raman spectra results suggested that plasma modification on the TiO_(2)surface layer is more drastic than on its inner layer,which was also consistent with transmission electron microscopy results.Optical emission spectra results suggest that numerous active species were generated during RF AP He/H_(2)plasma processing,while there were no peaks detected from thermal processing.A possible mechanism for the TiO_(2)hydrogenation process by plasma has been proposed.Numerous active species were generated in the bulk plasma region,accelerated in the sheath region,and bumped toward the TiO_(2)film,which will react with the TiO_(2)surface to form OVs and disordered layers.This leads to the tailoring of the band gap of black TiO_(2)and causes its light absorption to extend into the visible region.展开更多
Temperature and water flow through a culvert beneath the Alaska Highway near Beaver Creek,Yukon,were measured at hourly intervals between June and October 2013.These data were used to simulate the effect of the culver...Temperature and water flow through a culvert beneath the Alaska Highway near Beaver Creek,Yukon,were measured at hourly intervals between June and October 2013.These data were used to simulate the effect of the culvert on the thermal regime of the road embankment and subjacent permafrost.A 2-D thermal model of the embankment and permafrost was developed with TEMP/W and calibrated using field observations.Empirical relations were obtained between water temperatures at the entrance to the culvert,flow into the culvert,and water temperatures inside the structure.Water temperatures at the entrance and inside the culvert had a linear relation,while water temperatures inside the culvert and water flow were associated by a logarithmic relation.A multiple linear regression was used to summarize these relations.From this relationship,changes in the flow rate and water temperatures at the entrance of the culvert were simulated to obtain predicted water temperatures in the culvert.The temperatures in the culvert were used in the thermal model to determine their effects on the ground thermal regime near the culvert.Variation of ±10% in water flow rate had no impact on the thermal regime underneath the culvert.Variation of water temperature at the entrance of the culvert had a noticeable influence on the thermal regime.A final simulation was conducted without insulation beneath the culvert.The thaw depth was 30 cm with insulation,and 120 cm without insulation,illustrating the importance of insulation to the ground thermal regime.展开更多
The thermal regimes in sedimentary basins in the continental area of China are varied and reflect differences in geological settings. As a result of these variable thermal regimes, the history of hydrocarbon generatio...The thermal regimes in sedimentary basins in the continental area of China are varied and reflect differences in geological settings. As a result of these variable thermal regimes, the history of hydrocarbon generation in each basin is also different. An east-west profile of the thermal threshold across the continental basins of China, like the Liaohe Basin, the North China Basin, the Ordos Basin, the Qaidam Basin and the Tarim Basin, was constructed using large numbers of heat flow measurements, temperature data and rock thermophysical parameters. Isotherms, surface heat flow, mantle heat flow and Moho temperature beneath the basins are shown in the profile, which illustrates changes in some thermal characteristics between basins in east China and those in west China. Thermal evolution histories in basins were reconstructed using Easy%Ro method, apatite fission track annealing and other paleothermometers. Typical hydrocarbon generation histories of the primary source rocks were modeled by referring to the thermal evolution data. Thermal stages controlled source rocks maturation and oil and gas generation, and influenced the type of hydrocarbon (oil and gas) production in the basins.展开更多
Although many studies relevant to snow cover and permafrost have focused on alpine, arctic, and subarctic areas, there is still a lack of understanding of the influences of seasonal snow cover on the thermal regime of...Although many studies relevant to snow cover and permafrost have focused on alpine, arctic, and subarctic areas, there is still a lack of understanding of the influences of seasonal snow cover on the thermal regime of the soils in permafrost regions in the mid-latitudes and boreal regions, such as that on the westem flank of the Da Xing'anling (Hinggan) Mountains, northeastern China. This paper gives a detailed analysis on meteorological data series from 2001 to 2010 provided by the Gen'he Weather Station, which is located in a talik of discontinuous permafrost zone and with sparse meadow on the observation field. It is inferred that snow cover is important for the ground thermal regime in the middle Da Xing'anling Mountains. Snow cover of 10-cm in thickness and five to six months in duration (generally November to next March) can reduce the heat loss from the ground to the atmosphere by 28%, and by 71% if the snow depth increases to 36 cm. Moreover, the occurrence of snow cover resulted in mean annual ground surface temperatures 4.7-8.2℃ higher than the mean annual air temperatures recorded at the Gen'he Weather Station, The beginning date for stable snow cover establishment (SE date) and the initial snow depth (SDi) also had a great influences on the ground freezing process. Heavy snowfall before ground surface freeze-up could postpone and retard the freezing process in Gen'he. As a result, the duration of ground freezing was shortened by at least 20 days and the maximum depth of frost penetration was as much as 90 cm shallower.展开更多
An atmospheric non-thermal plasma jet was developed for sterilizing the Staphylococcus aureus (S. aureus). The plasma jet was generated by dielectric barrier discharge (DBD), which was characterized by electrical ...An atmospheric non-thermal plasma jet was developed for sterilizing the Staphylococcus aureus (S. aureus). The plasma jet was generated by dielectric barrier discharge (DBD), which was characterized by electrical and optical diagnostics. The survival curves of the bacteria showed that the plasma jet could effectively inactivate 10 6 cells of S. aureus within 120 seconds and the sterilizing efficiency depended critically on the discharge parameter of the applied voltage. It was further confirmed by scanning electron microscopy (SEM) that the cell morphology was seriously damaged by the plasma treatment. The plasma sterilization mechanism of S. aureus was attributed to the active species of OH, N 2 + and O, which were generated abundantly in the plasma jet and characterized by OES. Our findings suggest a convenient and low-cost way for sterilization and inactivation of bacteria.展开更多
The wide valley of the Yarlung Zangbo River is one of the most intense areas in terms of aeolian activity on the Tibetan Plateau,China.In the past,the evaluation of the intensity of aeolian activity in the Quxu–Sangr...The wide valley of the Yarlung Zangbo River is one of the most intense areas in terms of aeolian activity on the Tibetan Plateau,China.In the past,the evaluation of the intensity of aeolian activity in the Quxu–Sangri section of the Yarlung Zangbo River Valley was mainly based on data from the old meteorological stations,especially in non-sandy areas.In 2020,six new meteorological stations,which are closest to the new meteorological stations,were built in the wind erosion source regions(i.e.,sandy areas)in the Quxu–Sangri section.In this study,based on mathematical statistics and empirical orthogonal function(EOF)decomposition analysis,we compared the difference of the wind regime between new meteorological stations and old meteorological stations from December 2020 to November 2021,and discussed the reasons for the discrepancy.The results showed that sandy and non-sandy areas differed significantly regarding the mean velocity(8.3(±0.3)versus 7.7(±0.3)m/s,respectively),frequency(12.9%(±6.2%)versus 2.9%(±1.9%),respectively),and dominant direction(nearly east or west versus nearly north or south,respectively)of sand-driving winds,drift potential(168.1(±77.3)versus 24.0(±17.9)VU(where VU is the vector unit),respectively),resultant drift potential(92.3(±78.5)versus 8.7(±9.2)VU,respectively),and resultant drift direction(nearly westward or eastward versus nearly southward or northward,respectively).This indicated an obvious spatial variation in the wind regime between sandy and non-sandy areas and suggested that there exist problems when using wind velocity data from non-sandy areas to evaluate the wind regime in sandy areas.The wind regime between sandy and non-sandy areas differed due to the differences in topography,heat flows,and their coupling with underlying surface,thereby affecting the local atmospheric circulation.Affected by large-scale circulations(westerly jet and Indian monsoon systems),both sandy and non-sandy areas showed similar seasonal variations in their respective wind regime.These findings provide a credible reference for re-understanding the wind regime and scientific wind-sand control in the middle reaches of the Yarlung Zangbo River Valley.展开更多
The ground temperature and active layer are greatly influenced by vegetation in the Greater Hinggan Mountains in Northeastern China.However,vegetation,as a complex system,is difficult to separate the influence of its ...The ground temperature and active layer are greatly influenced by vegetation in the Greater Hinggan Mountains in Northeastern China.However,vegetation,as a complex system,is difficult to separate the influence of its different components on the ground thermal regime.In this paper,four vegetation types,including a Larix dahurica-Ledum palustre var.dilatatum-Bryum forest(P1),a L.dahurica-Betula fruticosa forest(P2),a L.dahurica-Carex tato forest(P3) in the China Forest Ecological Research Network Station in Genhe,and a Carex tato swamp(P4) at the permafrost observation site in Yitulihe,have been selected to study and compare their seasonal and annual influence on the ground thermal regime.Results show that the vegetation insulates the ground resulting in a relatively high ground temperature variability in the Carex tato swamp where there are no tree stands and shrubs when compared with three forested vegetation types present in the area.Vegetation thickness,structure,and coverage are the most important factors that determine the insulating properties of the vegetation.In particular,the growth of ground cover,its water-holding capacity and ability to intercept snow exert a significant effect on the degree of insulation of the soil under the same vegetation.展开更多
This study was conducted to determine the effect of atmospheric air on soil health in pots involving the growth of pea under two soil moisture regimes. Twelve pots were treated with three air quality treatments of urb...This study was conducted to determine the effect of atmospheric air on soil health in pots involving the growth of pea under two soil moisture regimes. Twelve pots were treated with three air quality treatments of urban, suburban and rural sites. In situ soil respiration increased under urban and suburban while it decreased little under rural site atmospheric conditions. These data support the relationships between the number of microorganisms in soils and carbon dioxide fluxes. Microbial biomass, metabolic quotient and crop yields or biomass were found most sensitive indicators of soil quality, which significantly varied in response to air quality and soil moisture regimes. The soil microbial biomass, metabolic quotient, and basal respiration were the most practical quality index variables;however, when using only a single predicator, microbial biomass was the most sensitive indicator of the soil quality.展开更多
Korea has adopted Environmental Impact Assessment (hereafter “EIA”) system for more than 3 decades. There are 74 big projects subject to EIA according to (Environmental Impact Assessment Law (No. 10892). For thermal...Korea has adopted Environmental Impact Assessment (hereafter “EIA”) system for more than 3 decades. There are 74 big projects subject to EIA according to (Environmental Impact Assessment Law (No. 10892). For thermal power plant of which output is more than 10 MW, EIA must be done by proponents. To assess impact on atmospheric environment, proponents utilize air dispersion models and to minimize the adverse impact on air quality, state-of-the-art add-on control technology is applied.展开更多
This work simulates the dispersion and atmospheric attenuation of pollutants from the Dibamba-Douala thermal power plant. The objective of this research is to study the dispersion of air pollutants and mitigate the im...This work simulates the dispersion and atmospheric attenuation of pollutants from the Dibamba-Douala thermal power plant. The objective of this research is to study the dispersion of air pollutants and mitigate the impact of pollutants on the populations living around the power plant. The methodology used is as follows: the Gaussian model is used for the representation of the dispersion in the form of a plume, the finite difference method for digital resolution. Finally, dispersion charts are constructed which allow the heights of the chimneys to be fixed for which the concentrations of pollutants discharged comply with ambient air quality standards. The results obtained using the simulation made in the MATLAB software version 2016 show that, for a wind regime of 1.5 m/s;we have a predicted distance of 150 m at which the concentration is canceled out. Then, for the wind speed of 2 m/s;we had a predicted distance of 125 m and finally for a wind speed of 2.5 m/s;we observed the 120 m distance at which the concentration is canceled. In addition, for the same wind regimes, the attenuation of pollutants at ground level is obtained for a height of 60 m.展开更多
Non-thermal C/H/Ar plasmas are widely applied to carbonaceous material production and processing.In this work,plasma parameters and gaseous species of the atmospheric non-thermal C/H/Ar plasmas produced by an atmosphe...Non-thermal C/H/Ar plasmas are widely applied to carbonaceous material production and processing.In this work,plasma parameters and gaseous species of the atmospheric non-thermal C/H/Ar plasmas produced by an atmospheric-pressure DC arc discharge generator in CH_4/Ar were investigated.The voltage-current characteristics were measured for different CH_4/Ar ratios.Optical emission spectroscopy was employed to analyze the electron excitation temperature,gas temperature and electron density under various discharge conditions.The hydrocarbon molecules produced in the CH4/Ar plasmas were detected with photoionization mass spectrometry.The optical spectral results demonstrated that the electron excitation temperature was 0.4-1 eV,the gas temperature was 2800-4200 K and the electron density was in the range of(5-20)×10^15 cm^-3.The mass spectrum indicated that a variety of unsaturated hydrocarbons(C2H4,C3H6,C6H6,etc.) and several highly unsaturated hydrocarbons(C4H2,C5H6,etc.) were produced in the non-thermal arc plasmas.展开更多
The advanced heat flux manipulating structures inspired by TO-based spatial mapping have aroused wide interests owing to huge potential in high-efficient thermal energy utilization.However,most researches are limited ...The advanced heat flux manipulating structures inspired by TO-based spatial mapping have aroused wide interests owing to huge potential in high-efficient thermal energy utilization.However,most researches are limited to the realization of single function in one specific structure and appropriate evaluation of the energy transfer process is relatively lacking.In this work,based on time-dependent two-dimensional heat conduction equation,a co-effect structure capable of accomplishing concentration and rotation functions simultaneously is established and validated by finite element simulations compared with the conventional single concentrator and singe rotator.In addition,from the perspective of thermodynamics,the transformed local entropy production rate and total entropy production are theoretically derived and applied to evaluate the quality of energy transfer processes.The proposed co-effect structure can help to explore other potential mass/flux manipulating devices and the evaluation method is valuable for the further manufacturing as well as optimization of these devices in engineering applications.展开更多
In the last several decades, the underlying surface conditions on the Qinghai-Tibet Plateau have changed dramatically, causing permafrost degradation due to climate change and human activities. This change severely in...In the last several decades, the underlying surface conditions on the Qinghai-Tibet Plateau have changed dramatically, causing permafrost degradation due to climate change and human activities. This change severely influenced the cold regions environment and engineering infrastructure built above permafrost. Permafrost is a product of the interaction between the atmosphere and the ground. The formation and change of permafrost are determined by the energy exchange between earth and atmosphere system. Fieldwork was performed in order to learn how land surface change influenced the thermal regime in permafrost regions. In this article, the field data observed in the Fenghuo Mountain regions was used to analyze the thermal conditions under different underlying surfaces on the Qinghai-Tibet Plateau. Results show that underlying surface change may alter the primary energy balance and the thermal conditions of permafrost. The thermal flux in the permafrost regions is also changed, resulting in rising upper soil temperature and thickening active layer. Vegetation could prevent solar radiation from entering the ground, cooling the ground in the warm season. Also, vegetation has heat insulation and heat preservation functions related to the ground surface and may keep the permafrost stable. Plots covered with black plastic film have higher temperatures compared with plots covered by natural vegetation. The reason is that black plastic film has a low albedo, which could increase the absorbed solar radiation, and also decrease evapotranspiration. The "greenhouse effect" of transparent plastic film might effectively reduce the emission of long-wave radiation from the surface, decreasing heat loss from the earth's surface, and prominently increasing ground surface temperature.展开更多
A global mean ocean model including atmospheric heating, heat capacity of the mixed layer ocean, and vertical thermal diffusivity in the lower ocean, proposed by Cess and Goldenberg (1981), is used in this paper to st...A global mean ocean model including atmospheric heating, heat capacity of the mixed layer ocean, and vertical thermal diffusivity in the lower ocean, proposed by Cess and Goldenberg (1981), is used in this paper to study the sensitivity of global warming to the vertical diffusivity. The results suggest that the behaviour of upper ocean temperature is mainly determined by the magnitude of upper layer diffusivity and an ocean with a larger diffusivity leads to a less increase of sea surface temperature and a longer time delay for the global warming induced by increasing CO2 than that with smaller one. The global warming relative to four scenarios of CO2 emission assumed by Intergovernmental Panel of Climate Change (IPCC) is also estimated by using the model with two kinds of thermal diffusivities. The result shows that for various combinations of the CO2 emission scenarios and the diffusivities, the oceanic time delay to the global warming varies from 15 years to 70 years.展开更多
In the first part of the research,it was shown that the main factors that are responsible for the quality of the granular food products frozen using the fluidization method,are the size and the shape of the product th...In the first part of the research,it was shown that the main factors that are responsible for the quality of the granular food products frozen using the fluidization method,are the size and the shape of the product that is exposed to the freezing by fluidization process,the heat transfer coefficients,the temperature,and the speed of the fluidization agent.All these factors are responsible for the size and the distribution of the ice crystals that are formed during the freezing process.The qualitative characteristic that is modified after the freezing by fluidization process is the structural-textural stiffness.展开更多
A repeatable and simple thermal splicing method for low loss splice between fluoride and silica fibers is presented. The minimum splicing loss of 0.58 dB is achieved experimentally with this approach, Meanwhile, the p...A repeatable and simple thermal splicing method for low loss splice between fluoride and silica fibers is presented. The minimum splicing loss of 0.58 dB is achieved experimentally with this approach, Meanwhile, the power capacity of this splicing joint is also tested with a high power fiber laser. The maximum input power is up to 15 W, only limited by the available power of the laser source. To the best of our knowledge, this is the first report on thermal splicing between fluoride and silica fibers operating in a high power regime without any complicated ion-assisted deposition process.展开更多
Non-thermal plasma at atmospheric pressure was explored for the preparation of polysilicon from SiCl4. The power supply sources of positive pulse and alternating current (8 kHz and 100 kHz) were compared for polysil...Non-thermal plasma at atmospheric pressure was explored for the preparation of polysilicon from SiCl4. The power supply sources of positive pulse and alternating current (8 kHz and 100 kHz) were compared for polysilicon preparation. The samples prepared by using the 100 kHz power source were crystalline silicon. The effects of H2 and SiCl4 volume fractions were investigated. The optical emission spectra showed that silicon species played an important role in polysilicon deposition展开更多
Three-dimensional quasi-direct numerical simulations have been performed to investigate a thermal plasma reactor with a counterflow jet. The effects of the momentum flux ratio and distance between the counterflow jet ...Three-dimensional quasi-direct numerical simulations have been performed to investigate a thermal plasma reactor with a counterflow jet. The effects of the momentum flux ratio and distance between the counterflow jet and the thermal plasma jet on the flow characteristics are addressed. The numerical results show that the dimensionless location of the stagnation layer is significantly affected by the momentum flux ratio, but it is not dependent on the distance.Specifically, the stagnation layer is closer to the plasma torch outlet with the increase of the momentum flux ratio. Furthermore, the flow regimes of the stagnation layer and the flow characteristics of the thermal plasma jet are closely related to the momentum flux ratio. The characteristic frequencies associated with the different regimes are identified. The deflecting oscillation flow regimes are found when the momentum flux ratio is low, which provokes axial velocity fluctuations inside the thermal plasma jet. By contrast, for cases with a high momentum flux ratio, flapping flow regimes are distinguished. The thermal plasma jets are very stable and the axial velocity fluctuations mainly exist in the stagnation layer.展开更多
基金financially supported by National Natural Science Foundation of China(Nos.12075054,12205040,12175036,11875104)。
文摘The effects of radio frequency(RF)atmospheric pressure(AP)He/H_(2)plasma and thermal treatment on the hydrogenation of TiO_(2)thin films were investigated and compared in this work.The color of the original TiO_(2)film changes from white to black after being hydrogenated in He/H_(2)plasma at160 W(gas temperature~381℃)within 5 min,while the color of the thermally treated TiO_(2)film did not change significantly even in pure H_(2)or He/H_(2)atmosphere with higher temperature(470℃)and longer time(30 min).This indicated that a more effective hydrogenation reaction happened through RF AP He/H_(2)plasma treatment than through pure H_(2)or He/H_(2)thermal treatment.The color change of TiO_(2)film was measured based on the Commission Internationale d’Eclairage L*a*b*color space system.Hydrogenated TiO_(2)film displayed improved visible light absorption with increased plasma power.The morphology of the cauliflower-like nanoparticles of the TiO_(2)film surface remained unchanged after plasma processing.X-ray photoelectron spectroscopy results showed that the contents of Ti3+species and Ti-OH bonds in the plasma-hydrogenated black TiO_(2)increased compared with those in the thermally treated TiO_(2).X-ray diffraction(XRD)patterns and Raman spectra indicated that plasma would destroy the crystal structure of the TiO_(2)surface layer,while thermal annealing would increase the overall crystallinity.The different trends of XRD and Raman spectra results suggested that plasma modification on the TiO_(2)surface layer is more drastic than on its inner layer,which was also consistent with transmission electron microscopy results.Optical emission spectra results suggest that numerous active species were generated during RF AP He/H_(2)plasma processing,while there were no peaks detected from thermal processing.A possible mechanism for the TiO_(2)hydrogenation process by plasma has been proposed.Numerous active species were generated in the bulk plasma region,accelerated in the sheath region,and bumped toward the TiO_(2)film,which will react with the TiO_(2)surface to form OVs and disordered layers.This leads to the tailoring of the band gap of black TiO_(2)and causes its light absorption to extend into the visible region.
基金Transport Canada for financial support and Yukon Highways and Public Works for their support,logistics and assistance during instrumentation at the new Beaver Creek Culvert and information regarding the rules for construction of culverts in Yukon
文摘Temperature and water flow through a culvert beneath the Alaska Highway near Beaver Creek,Yukon,were measured at hourly intervals between June and October 2013.These data were used to simulate the effect of the culvert on the thermal regime of the road embankment and subjacent permafrost.A 2-D thermal model of the embankment and permafrost was developed with TEMP/W and calibrated using field observations.Empirical relations were obtained between water temperatures at the entrance to the culvert,flow into the culvert,and water temperatures inside the structure.Water temperatures at the entrance and inside the culvert had a linear relation,while water temperatures inside the culvert and water flow were associated by a logarithmic relation.A multiple linear regression was used to summarize these relations.From this relationship,changes in the flow rate and water temperatures at the entrance of the culvert were simulated to obtain predicted water temperatures in the culvert.The temperatures in the culvert were used in the thermal model to determine their effects on the ground thermal regime near the culvert.Variation of ±10% in water flow rate had no impact on the thermal regime underneath the culvert.Variation of water temperature at the entrance of the culvert had a noticeable influence on the thermal regime.A final simulation was conducted without insulation beneath the culvert.The thaw depth was 30 cm with insulation,and 120 cm without insulation,illustrating the importance of insulation to the ground thermal regime.
文摘The thermal regimes in sedimentary basins in the continental area of China are varied and reflect differences in geological settings. As a result of these variable thermal regimes, the history of hydrocarbon generation in each basin is also different. An east-west profile of the thermal threshold across the continental basins of China, like the Liaohe Basin, the North China Basin, the Ordos Basin, the Qaidam Basin and the Tarim Basin, was constructed using large numbers of heat flow measurements, temperature data and rock thermophysical parameters. Isotherms, surface heat flow, mantle heat flow and Moho temperature beneath the basins are shown in the profile, which illustrates changes in some thermal characteristics between basins in east China and those in west China. Thermal evolution histories in basins were reconstructed using Easy%Ro method, apatite fission track annealing and other paleothermometers. Typical hydrocarbon generation histories of the primary source rocks were modeled by referring to the thermal evolution data. Thermal stages controlled source rocks maturation and oil and gas generation, and influenced the type of hydrocarbon (oil and gas) production in the basins.
基金supported by the National Natural Science Foundation of China (Nos. 41201066, 41401028, and J0930003/J0109)the State Key Laboratory of Frozen Soils Engineering (No. SKLFSE-ZT-14)
文摘Although many studies relevant to snow cover and permafrost have focused on alpine, arctic, and subarctic areas, there is still a lack of understanding of the influences of seasonal snow cover on the thermal regime of the soils in permafrost regions in the mid-latitudes and boreal regions, such as that on the westem flank of the Da Xing'anling (Hinggan) Mountains, northeastern China. This paper gives a detailed analysis on meteorological data series from 2001 to 2010 provided by the Gen'he Weather Station, which is located in a talik of discontinuous permafrost zone and with sparse meadow on the observation field. It is inferred that snow cover is important for the ground thermal regime in the middle Da Xing'anling Mountains. Snow cover of 10-cm in thickness and five to six months in duration (generally November to next March) can reduce the heat loss from the ground to the atmosphere by 28%, and by 71% if the snow depth increases to 36 cm. Moreover, the occurrence of snow cover resulted in mean annual ground surface temperatures 4.7-8.2℃ higher than the mean annual air temperatures recorded at the Gen'he Weather Station, The beginning date for stable snow cover establishment (SE date) and the initial snow depth (SDi) also had a great influences on the ground freezing process. Heavy snowfall before ground surface freeze-up could postpone and retard the freezing process in Gen'he. As a result, the duration of ground freezing was shortened by at least 20 days and the maximum depth of frost penetration was as much as 90 cm shallower.
基金supported by National Natural Science Foundation of China (Nos.10835004 and 10905010)the New Century Excellent Talents in University of China (No.NCET-08-0760)
文摘An atmospheric non-thermal plasma jet was developed for sterilizing the Staphylococcus aureus (S. aureus). The plasma jet was generated by dielectric barrier discharge (DBD), which was characterized by electrical and optical diagnostics. The survival curves of the bacteria showed that the plasma jet could effectively inactivate 10 6 cells of S. aureus within 120 seconds and the sterilizing efficiency depended critically on the discharge parameter of the applied voltage. It was further confirmed by scanning electron microscopy (SEM) that the cell morphology was seriously damaged by the plasma treatment. The plasma sterilization mechanism of S. aureus was attributed to the active species of OH, N 2 + and O, which were generated abundantly in the plasma jet and characterized by OES. Our findings suggest a convenient and low-cost way for sterilization and inactivation of bacteria.
基金supported by the Project for Establishing a Sand-dust Monitoring and Forecast System for the North-bank Settlement Area of the Yarlung Zangbo River (under the 13th Five-year Plan of the Tibet Autonomous Region, China)the Chinese Academy of Sciences Interdisciplinary Innovation Team and the Shannan City Science and Technology Plan Project (E129020301).
文摘The wide valley of the Yarlung Zangbo River is one of the most intense areas in terms of aeolian activity on the Tibetan Plateau,China.In the past,the evaluation of the intensity of aeolian activity in the Quxu–Sangri section of the Yarlung Zangbo River Valley was mainly based on data from the old meteorological stations,especially in non-sandy areas.In 2020,six new meteorological stations,which are closest to the new meteorological stations,were built in the wind erosion source regions(i.e.,sandy areas)in the Quxu–Sangri section.In this study,based on mathematical statistics and empirical orthogonal function(EOF)decomposition analysis,we compared the difference of the wind regime between new meteorological stations and old meteorological stations from December 2020 to November 2021,and discussed the reasons for the discrepancy.The results showed that sandy and non-sandy areas differed significantly regarding the mean velocity(8.3(±0.3)versus 7.7(±0.3)m/s,respectively),frequency(12.9%(±6.2%)versus 2.9%(±1.9%),respectively),and dominant direction(nearly east or west versus nearly north or south,respectively)of sand-driving winds,drift potential(168.1(±77.3)versus 24.0(±17.9)VU(where VU is the vector unit),respectively),resultant drift potential(92.3(±78.5)versus 8.7(±9.2)VU,respectively),and resultant drift direction(nearly westward or eastward versus nearly southward or northward,respectively).This indicated an obvious spatial variation in the wind regime between sandy and non-sandy areas and suggested that there exist problems when using wind velocity data from non-sandy areas to evaluate the wind regime in sandy areas.The wind regime between sandy and non-sandy areas differed due to the differences in topography,heat flows,and their coupling with underlying surface,thereby affecting the local atmospheric circulation.Affected by large-scale circulations(westerly jet and Indian monsoon systems),both sandy and non-sandy areas showed similar seasonal variations in their respective wind regime.These findings provide a credible reference for re-understanding the wind regime and scientific wind-sand control in the middle reaches of the Yarlung Zangbo River Valley.
基金supported by the Open Fund of the State Key Laboratory of Frozen Soils Engineering (Grant No.SKLFSE200902,SKLFSE-ZT-14 and SKLFSE-ZT-12)National Natural Science Foundation of China (Grant Nos.41201066 and J0930003/ J0109)
文摘The ground temperature and active layer are greatly influenced by vegetation in the Greater Hinggan Mountains in Northeastern China.However,vegetation,as a complex system,is difficult to separate the influence of its different components on the ground thermal regime.In this paper,four vegetation types,including a Larix dahurica-Ledum palustre var.dilatatum-Bryum forest(P1),a L.dahurica-Betula fruticosa forest(P2),a L.dahurica-Carex tato forest(P3) in the China Forest Ecological Research Network Station in Genhe,and a Carex tato swamp(P4) at the permafrost observation site in Yitulihe,have been selected to study and compare their seasonal and annual influence on the ground thermal regime.Results show that the vegetation insulates the ground resulting in a relatively high ground temperature variability in the Carex tato swamp where there are no tree stands and shrubs when compared with three forested vegetation types present in the area.Vegetation thickness,structure,and coverage are the most important factors that determine the insulating properties of the vegetation.In particular,the growth of ground cover,its water-holding capacity and ability to intercept snow exert a significant effect on the degree of insulation of the soil under the same vegetation.
文摘This study was conducted to determine the effect of atmospheric air on soil health in pots involving the growth of pea under two soil moisture regimes. Twelve pots were treated with three air quality treatments of urban, suburban and rural sites. In situ soil respiration increased under urban and suburban while it decreased little under rural site atmospheric conditions. These data support the relationships between the number of microorganisms in soils and carbon dioxide fluxes. Microbial biomass, metabolic quotient and crop yields or biomass were found most sensitive indicators of soil quality, which significantly varied in response to air quality and soil moisture regimes. The soil microbial biomass, metabolic quotient, and basal respiration were the most practical quality index variables;however, when using only a single predicator, microbial biomass was the most sensitive indicator of the soil quality.
文摘Korea has adopted Environmental Impact Assessment (hereafter “EIA”) system for more than 3 decades. There are 74 big projects subject to EIA according to (Environmental Impact Assessment Law (No. 10892). For thermal power plant of which output is more than 10 MW, EIA must be done by proponents. To assess impact on atmospheric environment, proponents utilize air dispersion models and to minimize the adverse impact on air quality, state-of-the-art add-on control technology is applied.
文摘This work simulates the dispersion and atmospheric attenuation of pollutants from the Dibamba-Douala thermal power plant. The objective of this research is to study the dispersion of air pollutants and mitigate the impact of pollutants on the populations living around the power plant. The methodology used is as follows: the Gaussian model is used for the representation of the dispersion in the form of a plume, the finite difference method for digital resolution. Finally, dispersion charts are constructed which allow the heights of the chimneys to be fixed for which the concentrations of pollutants discharged comply with ambient air quality standards. The results obtained using the simulation made in the MATLAB software version 2016 show that, for a wind regime of 1.5 m/s;we have a predicted distance of 150 m at which the concentration is canceled out. Then, for the wind speed of 2 m/s;we had a predicted distance of 125 m and finally for a wind speed of 2.5 m/s;we observed the 120 m distance at which the concentration is canceled. In addition, for the same wind regimes, the attenuation of pollutants at ground level is obtained for a height of 60 m.
基金supported by National Natural Science Foundation of China(Nos.11035005,11475174,50876101)USTC-NSRL Association Funding(No.KY2090130001)
文摘Non-thermal C/H/Ar plasmas are widely applied to carbonaceous material production and processing.In this work,plasma parameters and gaseous species of the atmospheric non-thermal C/H/Ar plasmas produced by an atmospheric-pressure DC arc discharge generator in CH_4/Ar were investigated.The voltage-current characteristics were measured for different CH_4/Ar ratios.Optical emission spectroscopy was employed to analyze the electron excitation temperature,gas temperature and electron density under various discharge conditions.The hydrocarbon molecules produced in the CH4/Ar plasmas were detected with photoionization mass spectrometry.The optical spectral results demonstrated that the electron excitation temperature was 0.4-1 eV,the gas temperature was 2800-4200 K and the electron density was in the range of(5-20)×10^15 cm^-3.The mass spectrum indicated that a variety of unsaturated hydrocarbons(C2H4,C3H6,C6H6,etc.) and several highly unsaturated hydrocarbons(C4H2,C5H6,etc.) were produced in the non-thermal arc plasmas.
基金the National Natural Science Foundation of China(Grant Nos.51776050 and 51536001).
文摘The advanced heat flux manipulating structures inspired by TO-based spatial mapping have aroused wide interests owing to huge potential in high-efficient thermal energy utilization.However,most researches are limited to the realization of single function in one specific structure and appropriate evaluation of the energy transfer process is relatively lacking.In this work,based on time-dependent two-dimensional heat conduction equation,a co-effect structure capable of accomplishing concentration and rotation functions simultaneously is established and validated by finite element simulations compared with the conventional single concentrator and singe rotator.In addition,from the perspective of thermodynamics,the transformed local entropy production rate and total entropy production are theoretically derived and applied to evaluate the quality of energy transfer processes.The proposed co-effect structure can help to explore other potential mass/flux manipulating devices and the evaluation method is valuable for the further manufacturing as well as optimization of these devices in engineering applications.
基金supported by a grant from the National Natural Science Foundation of China (No. 40830533 No.40871037)+2 种基金the Major State Basic Research Develop-ment Program of China (973 Program) (No. 2005CB422003No. 2007CB411505 No. 2007CB411505)
文摘In the last several decades, the underlying surface conditions on the Qinghai-Tibet Plateau have changed dramatically, causing permafrost degradation due to climate change and human activities. This change severely influenced the cold regions environment and engineering infrastructure built above permafrost. Permafrost is a product of the interaction between the atmosphere and the ground. The formation and change of permafrost are determined by the energy exchange between earth and atmosphere system. Fieldwork was performed in order to learn how land surface change influenced the thermal regime in permafrost regions. In this article, the field data observed in the Fenghuo Mountain regions was used to analyze the thermal conditions under different underlying surfaces on the Qinghai-Tibet Plateau. Results show that underlying surface change may alter the primary energy balance and the thermal conditions of permafrost. The thermal flux in the permafrost regions is also changed, resulting in rising upper soil temperature and thickening active layer. Vegetation could prevent solar radiation from entering the ground, cooling the ground in the warm season. Also, vegetation has heat insulation and heat preservation functions related to the ground surface and may keep the permafrost stable. Plots covered with black plastic film have higher temperatures compared with plots covered by natural vegetation. The reason is that black plastic film has a low albedo, which could increase the absorbed solar radiation, and also decrease evapotranspiration. The "greenhouse effect" of transparent plastic film might effectively reduce the emission of long-wave radiation from the surface, decreasing heat loss from the earth's surface, and prominently increasing ground surface temperature.
文摘A global mean ocean model including atmospheric heating, heat capacity of the mixed layer ocean, and vertical thermal diffusivity in the lower ocean, proposed by Cess and Goldenberg (1981), is used in this paper to study the sensitivity of global warming to the vertical diffusivity. The results suggest that the behaviour of upper ocean temperature is mainly determined by the magnitude of upper layer diffusivity and an ocean with a larger diffusivity leads to a less increase of sea surface temperature and a longer time delay for the global warming induced by increasing CO2 than that with smaller one. The global warming relative to four scenarios of CO2 emission assumed by Intergovernmental Panel of Climate Change (IPCC) is also estimated by using the model with two kinds of thermal diffusivities. The result shows that for various combinations of the CO2 emission scenarios and the diffusivities, the oceanic time delay to the global warming varies from 15 years to 70 years.
基金The work has been funded by the PN-II-RU-TD-1-178(301)/01.10.2007.
文摘In the first part of the research,it was shown that the main factors that are responsible for the quality of the granular food products frozen using the fluidization method,are the size and the shape of the product that is exposed to the freezing by fluidization process,the heat transfer coefficients,the temperature,and the speed of the fluidization agent.All these factors are responsible for the size and the distribution of the ice crystals that are formed during the freezing process.The qualitative characteristic that is modified after the freezing by fluidization process is the structural-textural stiffness.
基金Supported by the National Natural Science Foundation of China under Grant No 61275144the Innovative Research and Development Project of Nanshan District under Grant No KC2013JSCX0013A+1 种基金the Shenzhen Science and Technology Innovation Projects under Grant No JCYJ20150324140036862the Funding from Shenzhen University under Grant No 00008355
文摘A repeatable and simple thermal splicing method for low loss splice between fluoride and silica fibers is presented. The minimum splicing loss of 0.58 dB is achieved experimentally with this approach, Meanwhile, the power capacity of this splicing joint is also tested with a high power fiber laser. The maximum input power is up to 15 W, only limited by the available power of the laser source. To the best of our knowledge, this is the first report on thermal splicing between fluoride and silica fibers operating in a high power regime without any complicated ion-assisted deposition process.
基金support from the Scientific Research Fund of Liaoning Provincial Education Department for Colleges and Universities of China (No. 2008T229)
文摘Non-thermal plasma at atmospheric pressure was explored for the preparation of polysilicon from SiCl4. The power supply sources of positive pulse and alternating current (8 kHz and 100 kHz) were compared for polysilicon preparation. The samples prepared by using the 100 kHz power source were crystalline silicon. The effects of H2 and SiCl4 volume fractions were investigated. The optical emission spectra showed that silicon species played an important role in polysilicon deposition
基金supported by National Natural Science Foundation of China (Nos. 12035015 and 12105282)。
文摘Three-dimensional quasi-direct numerical simulations have been performed to investigate a thermal plasma reactor with a counterflow jet. The effects of the momentum flux ratio and distance between the counterflow jet and the thermal plasma jet on the flow characteristics are addressed. The numerical results show that the dimensionless location of the stagnation layer is significantly affected by the momentum flux ratio, but it is not dependent on the distance.Specifically, the stagnation layer is closer to the plasma torch outlet with the increase of the momentum flux ratio. Furthermore, the flow regimes of the stagnation layer and the flow characteristics of the thermal plasma jet are closely related to the momentum flux ratio. The characteristic frequencies associated with the different regimes are identified. The deflecting oscillation flow regimes are found when the momentum flux ratio is low, which provokes axial velocity fluctuations inside the thermal plasma jet. By contrast, for cases with a high momentum flux ratio, flapping flow regimes are distinguished. The thermal plasma jets are very stable and the axial velocity fluctuations mainly exist in the stagnation layer.