A program incorporating the parallel code of large eddy simulation (LES) and particle transportation model is developed to simulate the motion of particles in an atmospheric turbulent boundary layer (ATBL). A mode...A program incorporating the parallel code of large eddy simulation (LES) and particle transportation model is developed to simulate the motion of particles in an atmospheric turbulent boundary layer (ATBL). A model of particles of 100-micrometer order coupling with large scale ATBL is proposed. Two typical cases are studied, one focuses on the evolution of particle profile in the ATBL and the landing displacement of particles, whereas the other on the motion of particle stream.展开更多
Synthetic Aperture Radar(SAR)interferometry is one of the most powerful remote sensing tools for ground deformation detection.However,tropospheric delay greatly limits the measurement accuracy of the InSAR technique.W...Synthetic Aperture Radar(SAR)interferometry is one of the most powerful remote sensing tools for ground deformation detection.However,tropospheric delay greatly limits the measurement accuracy of the InSAR technique.While vertically stratified tropospheric delays have been extensively investigated and well tackled,turbulent tropospheric phase noise still remains an intractable issue.In recent years,great efforts have been made to reduce the influence of turbulent atmospheric delay.This contribution is intended to provide a systematic review of the progress achieved in this field.First,it introduces the physical characteristics of atmospheric signals in interferograms.Then,a review of the main mitigation algorithms proposed in the literature is provided.In addition,the strengths and weaknesses of each approach are analyzed to provide guidance for choosing a suitable method accordingly.Finally,sug-gestions for resolving the challenging issues and an outlook for future research are given.展开更多
New Reynolds' mean momentum equations including both turbulent viscosity and dispersion are used to analyze atmospheric balance motions of the planetary boundary layer. It is pointed out that turbulent dispersion ...New Reynolds' mean momentum equations including both turbulent viscosity and dispersion are used to analyze atmospheric balance motions of the planetary boundary layer. It is pointed out that turbulent dispersion with r 0 will increase depth of Ekman layer, reduce wind velocity in Ekman layer and produce a more satisfactory Ekman spiral lines fit the observed wind hodograph. The wind profile in the surface layer including tur-bulent dispersion is still logarithmic but the von Karman constant k is replaced by k1 = 1 -2/k, the wind increasesa little more rapidly with height.展开更多
The study of large-scale atmospheric turbulence and transport processes is of vital importance in the general circulation of the atmosphere. The governing equations of the power and cross-spectra for the atmospheric m...The study of large-scale atmospheric turbulence and transport processes is of vital importance in the general circulation of the atmosphere. The governing equations of the power and cross-spectra for the atmospheric motion and transports in the domain of wave number frequency space have been derived. The contributions of the nonlinear interactions of the atmospheric waves in velocity and temperature fields to the conversion of kinetic and potential energies and to the meridional transports of angular momentum and sensible heat in the atmosphere have been discussed.展开更多
An optical Amplitude and Pulse Position Modulation(APPM) mapping scheme for strong turbulent atmospheric channel is proposed to optimize Bit Error Rate(BER) performance.In this scheme,a nonequidifferent amplitude seri...An optical Amplitude and Pulse Position Modulation(APPM) mapping scheme for strong turbulent atmospheric channel is proposed to optimize Bit Error Rate(BER) performance.In this scheme,a nonequidifferent amplitude series is designed based on quantitative BER analysis of the specific A×M APPM demapping procedures containing time slot selection and amplitude decision in selected time slot,which are different from traditional ones.Simulation results of 4×4,4×8 and 4×16 APPM show 4,3.4 and 6.9 d B SNR gain against traditional APPM scheme respectively.Thus significant BER performance improvement is achieved which helps to enhance reliability of freespace optical communication systems.展开更多
In view of the feature of flight flutter test data with atmospheric turbulence excitation, a method which combines wavelet transformation with random decrement technique for identifying flight flutter modal parameters...In view of the feature of flight flutter test data with atmospheric turbulence excitation, a method which combines wavelet transformation with random decrement technique for identifying flight flutter modal parameters is presented. This approach firstly uses random decrement technique to gain free decays corresponding to the acceleration response of the structure to some non-zero initial conditions. Then the continuous Morlet wavelet transformation of the free decays is performed; and the Parseval formula and residue theorem are used to simplify the transformation. The maximal wavelet transformation coefficients in different scales are searched out by means of band-filtering characteristic of Morlet wavelet, and then the modal parameters are identified according to the relationships with maximal modulus and angle of the wavelet transform. In addition, the condition of modal uncoupling is discussed according to variation trend of flight flutter modal parameters in the flight flutter state. The analysis results of simulation and flight flutter test data show that this approach is not only simple, effective and feasible, but also having good noise immunity.展开更多
The performance of a laser weapon system based on coherent beam combining(CBC)depends on its propagation properties in the atmosphere.In this study,an analytical model based on partial coherent beam combining(PCBC)for...The performance of a laser weapon system based on coherent beam combining(CBC)depends on its propagation properties in the atmosphere.In this study,an analytical model based on partial coherent beam combining(PCBC)for assumed coherence coefficients between beams in a CBC lattice was developed.The Kolmogorov model of atmospheric turbulence and the Hufnagel-Valley model of C^(2)_(n) dependence on atmospheric parameters were implemented.Novel simplified metrics were proposed to assess the CBC performance.Several beam profiles(super-Gaussian,truncated Gaussian,etc.)and geometries were analyzed in terms of maximal intensity in the far field.An approximate formula for PCBC efficiency dependent on the Fried radius was proposed.The results of CBC modeling were compared to those of the Gaussian beam propagation model in a turbulent atmosphere.The dependence of CBC performance on the C^(2)_(n) parameter,range,and elevation angle was analyzed.It could be concluded that the application of CBC for medium and long range propagation is impractical without an effective adaptive optics system.展开更多
The propagation properties of the off-axis superposition of partially coherent beams through atmospheric turbulence and their beam quality in terms of the mean-squared beam width w(z) and the power in the bucket (...The propagation properties of the off-axis superposition of partially coherent beams through atmospheric turbulence and their beam quality in terms of the mean-squared beam width w(z) and the power in the bucket (PIB) are studied in detail, where the effects of partial coherence, off-axis beam superposition and atmospheric turbulence are considered. The analytical expressions for the intensity, the beam width and the PIB are derived, and illustrative examples are given numerically. It is shown that the maximum intensity/max and the PIB decrease and w(z) increases as the refraction index structure constant Cn^2 increases. Therefore, the turbulence results in a degradation of the beam quality. However, the resulting partially coherent beam with a smaller value of spatial correlation parameter γ and larger values of separate distance Xd and beam number M is less affected by the turbulence than that with a larger value of y and smaller values of Xd and M. The main results obtained in this paper are explained physically.展开更多
The entangled orbital angular momentum(OAM) three photons propagating in Kolmogorov weak turbulence are investigated. Here, the single phase screen model is used to study the entanglement evolution of OAM photons. T...The entangled orbital angular momentum(OAM) three photons propagating in Kolmogorov weak turbulence are investigated. Here, the single phase screen model is used to study the entanglement evolution of OAM photons. The results indicate that the entangled OAM three-qubit state with higher OAM modes will be more robust against turbulence.Furthermore, it is found that the entangled OAM three-qubit state has a higher overall transmission for small OAM values.展开更多
Based on the modified Rytov theory and the international telecommunication union-radio (ITU-R) slant atmospheric structure constant model, the uniform scintillation index of partially coherent Gaussian-Schell model ...Based on the modified Rytov theory and the international telecommunication union-radio (ITU-R) slant atmospheric structure constant model, the uniform scintillation index of partially coherent Gaussian-Schell model (GSM) beam propa- gation in the slant path is derived from weak- to strong-turbulence regions considering inner- and outer-scale effects. The effects of wavelength of beams and inner- and outer-scale of turbulence on scintillation are analyzed numerically. Compar- ison between the scintillation of GSM beams under the von Karman spectrum and that of beams under the modified Hill spectrum is made. The results obtained show that the scintillation index obtained under the von Karman spectrum is smaller than that under the modified Hill spectrum. This study can find theory bases for the experiments of the partially coherent GSM beam propagation through atmospheric turbulence.展开更多
On the basis of the extended Huygens-Fresnel principle and the model of the refractive-index structure constant in the atmospheric turbulence proposed by the International Telecommunication Union-Radio Communication S...On the basis of the extended Huygens-Fresnel principle and the model of the refractive-index structure constant in the atmospheric turbulence proposed by the International Telecommunication Union-Radio Communication Sector,the characteristics of the partially coherent Gaussian Schell-model(GSM) beams propagating in slanted atmospheric turbulence are studied.Using the cross-spectral density function(CSDF),we derive the expressions for the effective beam radius,the spreading angle,and the average intensity.The variance of the angle-of-arrival fluctuation and the wander effect of the GSM beam in the turbulence are calculated numerically.The influences of the coherence degree,the propagation distance,the propagation height,and the waist radius on the propagation characteristics of the partially coherent beams are discussed and compared with those of the fully coherent Gaussian beams.展开更多
From the controlling equations of atmosphere motion, Prandtl's mixing length theory is used to derive the atmospheric turbulence models, such as Burgers equation model and Burgers-KdV equation model. And then the ...From the controlling equations of atmosphere motion, Prandtl's mixing length theory is used to derive the atmospheric turbulence models, such as Burgers equation model and Burgers-KdV equation model. And then the projective Riccati equations are applied to solve these atmospheric turbulence models, where much more patterns are obtained, including solitary wave pattern, singular pattern, and so on.展开更多
A new way is proposed to evaluate the influence of atmospheric turbulence on image resolution of airborne and space-borne optical remote sensing system, which is called as arrival angle-method. Applying this method, s...A new way is proposed to evaluate the influence of atmospheric turbulence on image resolution of airborne and space-borne optical remote sensing system, which is called as arrival angle-method. Applying this method, some engineering examples are selected to analyze the turbulence influences on image resolution based on three different atmospheric turbulence models quantificationally, for the airborne remote sensing system, the resolution errors caused by the atmospheric turbulence are less than 1 cm, and for the space-borne remote sensing system, the errors are around 1 cm. The results are similar to that obtained by the previous Friedmethod. Compared with the Fried-method, the arrival angle-method is rather simple and can be easily used in engineering fields.展开更多
This paper studies the propagation properties of Gauss-Bessel beams in a turbulent atmosphere. Based on the extended Huygens-Fresnel principle, it derives the intensity distribution expression for such beams propagati...This paper studies the propagation properties of Gauss-Bessel beams in a turbulent atmosphere. Based on the extended Huygens-Fresnel principle, it derives the intensity distribution expression for such beams propagating in a turbulent atmosphere. Then the influence of turbulence and source beam parameters on the beam propagation is studied in great detail. It finds that the intensity distribution of Gauss-Bessel beams will change into Gaussian profile in a turbulent atmosphere, and that stronger turbulence and smaller topological charges will lead to a faster changing.展开更多
By using the extended Huygens-Fresnel diffraction integral and the method of expanding the aperture function into a finite sum of complex Caussian functions, an approximate analytical formula of the double-distance pr...By using the extended Huygens-Fresnel diffraction integral and the method of expanding the aperture function into a finite sum of complex Caussian functions, an approximate analytical formula of the double-distance propagation for Caussian beam passing through a tilted cat-eye optical lens and going back along the entrance way in a turbulent atmosphere has been derived. Through numerical calculation, the effects of incidence angle, propagation distance, and structure constant on the propagation properties of a Gaussian beam in a turbulent atmosphere are studied. It is found that the incidence angle creates an unsymmetrical average intensity distribution pattern, while the propagation distance and the structure constant can each create a smooth and symmetrical average intensity distribution pattern. The average intensity peak gradually deviates from the centre, and the central average intensity value decreases quickly with the increase in incidence angle, while a larger structure constant can bring the average intensity peak back to the centre.展开更多
The optical rotational Doppler effect associated with orbital angular momentum provides a new means for rotational velocity detection.In this paper,we investigate the influence of atmospheric turbulence on the rotatio...The optical rotational Doppler effect associated with orbital angular momentum provides a new means for rotational velocity detection.In this paper,we investigate the influence of atmospheric turbulence on the rotational Doppler effect.First,we deduce the generalized formula of the rotational Doppler shift in atmospheric turbulence by mode decomposition.It is found that the rotational Doppler signal frequency spectrum will be broadened,and the bandwidth is related to the turbulence intensity.In addition,as the propagation distance increases,the bandwidth also increases.And when C_(n)^(2)≤5×10^(-15)m^(-2/3)and 2z≤2 km,the rotational Doppler signal frequency spectrum width d and the spiral spectrum width d_(0)satisfy the relationship d=2d_(0-1).Finally,we analyze the influence of mode crosstalk on the rotational Doppler effect,and the results show that it destroys the symmetrical distribution of the rotational Doppler spectrum about 2l·Ω/2π.This theoretical model enables us to better understand the generation of the rotational Doppler frequency and may help us better analyze the influence of the complex atmospheric environment on the rotational Doppler frequency.展开更多
A concise expression of the scintillation index is proposed for a plane optical wave and a spherical optical wave both propagating in a turbulent atmosphere with a zero inner scale and a finite inner scale under an ar...A concise expression of the scintillation index is proposed for a plane optical wave and a spherical optical wave both propagating in a turbulent atmosphere with a zero inner scale and a finite inner scale under an arbitrary fluctuation condition. The expression is based on both the results in the Rytov approximation under a weak fluctuation condition and the numerical results in a strong fluctuation regime. The maximum value of the scintillation index and its corresponding Rytov index are evaluated. These quantities are affected by the ratio of the turbulence inner scale to the Fresnel size.展开更多
Based on the extended Huygens-Fresnel principle, a two-frequency, two-point cross-spectral density function of partially coherent Gaussian-Schell model pulse (GSMP) beam propagation in slant atmospheric turbulence i...Based on the extended Huygens-Fresnel principle, a two-frequency, two-point cross-spectral density function of partially coherent Gaussian-Schell model pulse (GSMP) beam propagation in slant atmospheric turbulence is derived. Using the Markov approximation method and on the assumption that (w1 - w2)/(w1 + w2) ≤ 1, the theory obtained is valid for turbulence of any strength and can be applied to narrow-band signals. The expressions for average beam intensity, the beam size, and the two-frequency complex degree of coherence of a GSMP beam are obtained. The numerical results are presented, and the effects of the frequency, initial pulse width, initial beam radius, zenith angle, and outer scales on the complex degree of coherence are discussed. This study provides a better understanding of the second-order statistics of a GSMP beam propagating through atmospheric turbulence in the space-frequency domain.展开更多
This paper derives the explicit expressions for the average intensity, beam width and angular spread of Gaussian Schell-model (GSM) beams with edge dislocation propagating through atmospheric turbulence along a slan...This paper derives the explicit expressions for the average intensity, beam width and angular spread of Gaussian Schell-model (GSM) beams with edge dislocation propagating through atmospheric turbulence along a slant path. The propagation of GSM beams with edge dislocation through horizontal atmospheric turbulence can be treated as a special case through a slant one. The propagation properties of GSM beams with edge dislocation through slant atmospheric turbulence are studied, where the influence of edge dislocation parameters including the slope p and off-axis distance d on the spreading of GSM beams with edge dislocation in atmospheric turbulence is stressed. It shows that the spreading of the intensity profile of GSM beams with edge dislocation along a slant path is smaller than that along a horizontal path in the long-distance atmospheric propagation. The larger the slope |p| and the smaller the off-axis distance |d| are, the less the beam-width spreading and angular spread of GSM beams with edge dislocation are affected by turbulence. The CSM beams with edge dislocation is less affected by turbulence than that of GSM beams without edge dislocation. The results are illustrated numerically and their validity is interpreted physically.展开更多
We derive theoretically and verify experimentally a concise general expression for the normalized intensity correlations(IC)of partially coherent light in a weak atmospheric turbulence in the fast detector measurement...We derive theoretically and verify experimentally a concise general expression for the normalized intensity correlations(IC)of partially coherent light in a weak atmospheric turbulence in the fast detector measurement regime.The derived relation reveals that the medium turbulence acts,in general,as an additional noise source enhancing the IC of partially coherent beams.The maximum of the beam IC is,in general,enhanced,causing the fields to exhibit super-Gaussian statistics.On the other hand,the relation indicates that turbulence-induced noise is negligible for sufficiently low coherence light,which reveals the condition for the turbulence-free correlation imaging.展开更多
文摘A program incorporating the parallel code of large eddy simulation (LES) and particle transportation model is developed to simulate the motion of particles in an atmospheric turbulent boundary layer (ATBL). A model of particles of 100-micrometer order coupling with large scale ATBL is proposed. Two typical cases are studied, one focuses on the evolution of particle profile in the ATBL and the landing displacement of particles, whereas the other on the motion of particle stream.
基金This work was partly supported by the National Science Fund for Distinguished Young Scholars,grant number 41925016the National Natural Science Foundation of China,grant number 41804008.
文摘Synthetic Aperture Radar(SAR)interferometry is one of the most powerful remote sensing tools for ground deformation detection.However,tropospheric delay greatly limits the measurement accuracy of the InSAR technique.While vertically stratified tropospheric delays have been extensively investigated and well tackled,turbulent tropospheric phase noise still remains an intractable issue.In recent years,great efforts have been made to reduce the influence of turbulent atmospheric delay.This contribution is intended to provide a systematic review of the progress achieved in this field.First,it introduces the physical characteristics of atmospheric signals in interferograms.Then,a review of the main mitigation algorithms proposed in the literature is provided.In addition,the strengths and weaknesses of each approach are analyzed to provide guidance for choosing a suitable method accordingly.Finally,sug-gestions for resolving the challenging issues and an outlook for future research are given.
文摘New Reynolds' mean momentum equations including both turbulent viscosity and dispersion are used to analyze atmospheric balance motions of the planetary boundary layer. It is pointed out that turbulent dispersion with r 0 will increase depth of Ekman layer, reduce wind velocity in Ekman layer and produce a more satisfactory Ekman spiral lines fit the observed wind hodograph. The wind profile in the surface layer including tur-bulent dispersion is still logarithmic but the von Karman constant k is replaced by k1 = 1 -2/k, the wind increasesa little more rapidly with height.
文摘The study of large-scale atmospheric turbulence and transport processes is of vital importance in the general circulation of the atmosphere. The governing equations of the power and cross-spectra for the atmospheric motion and transports in the domain of wave number frequency space have been derived. The contributions of the nonlinear interactions of the atmospheric waves in velocity and temperature fields to the conversion of kinetic and potential energies and to the meridional transports of angular momentum and sensible heat in the atmosphere have been discussed.
基金financial supports from National High Technology 863 Program of China(No.2012AA011304)National International Technology Cooperation(No.2012DFG12110)+5 种基金National NSFC(No.61275158/61201151/61275074)Beijing Nova Program( No.Z141101001814048)Beijing Excellent Ph.D.Thesis Guidance Foundation(No.20121001302)the Universities Ph.D.Special Research Funds(No.20120005110003)the Fundamental Research Funds for the Central Universities with No.2014RC0203Fund of State Key Laboratory of IPOC(BUPT)
文摘An optical Amplitude and Pulse Position Modulation(APPM) mapping scheme for strong turbulent atmospheric channel is proposed to optimize Bit Error Rate(BER) performance.In this scheme,a nonequidifferent amplitude series is designed based on quantitative BER analysis of the specific A×M APPM demapping procedures containing time slot selection and amplitude decision in selected time slot,which are different from traditional ones.Simulation results of 4×4,4×8 and 4×16 APPM show 4,3.4 and 6.9 d B SNR gain against traditional APPM scheme respectively.Thus significant BER performance improvement is achieved which helps to enhance reliability of freespace optical communication systems.
基金National Natural Science Foundation of China(60134010)
文摘In view of the feature of flight flutter test data with atmospheric turbulence excitation, a method which combines wavelet transformation with random decrement technique for identifying flight flutter modal parameters is presented. This approach firstly uses random decrement technique to gain free decays corresponding to the acceleration response of the structure to some non-zero initial conditions. Then the continuous Morlet wavelet transformation of the free decays is performed; and the Parseval formula and residue theorem are used to simplify the transformation. The maximal wavelet transformation coefficients in different scales are searched out by means of band-filtering characteristic of Morlet wavelet, and then the modal parameters are identified according to the relationships with maximal modulus and angle of the wavelet transform. In addition, the condition of modal uncoupling is discussed according to variation trend of flight flutter modal parameters in the flight flutter state. The analysis results of simulation and flight flutter test data show that this approach is not only simple, effective and feasible, but also having good noise immunity.
基金This work was financed in the framework of the strategic program DOB-1-6/1/PS/2014 funded by the National Center for Research and Development of Poland.
文摘The performance of a laser weapon system based on coherent beam combining(CBC)depends on its propagation properties in the atmosphere.In this study,an analytical model based on partial coherent beam combining(PCBC)for assumed coherence coefficients between beams in a CBC lattice was developed.The Kolmogorov model of atmospheric turbulence and the Hufnagel-Valley model of C^(2)_(n) dependence on atmospheric parameters were implemented.Novel simplified metrics were proposed to assess the CBC performance.Several beam profiles(super-Gaussian,truncated Gaussian,etc.)and geometries were analyzed in terms of maximal intensity in the far field.An approximate formula for PCBC efficiency dependent on the Fried radius was proposed.The results of CBC modeling were compared to those of the Gaussian beam propagation model in a turbulent atmosphere.The dependence of CBC performance on the C^(2)_(n) parameter,range,and elevation angle was analyzed.It could be concluded that the application of CBC for medium and long range propagation is impractical without an effective adaptive optics system.
基金supported by the National Natural Science Foundation of China (Grant No 60778048)
文摘The propagation properties of the off-axis superposition of partially coherent beams through atmospheric turbulence and their beam quality in terms of the mean-squared beam width w(z) and the power in the bucket (PIB) are studied in detail, where the effects of partial coherence, off-axis beam superposition and atmospheric turbulence are considered. The analytical expressions for the intensity, the beam width and the PIB are derived, and illustrative examples are given numerically. It is shown that the maximum intensity/max and the PIB decrease and w(z) increases as the refraction index structure constant Cn^2 increases. Therefore, the turbulence results in a degradation of the beam quality. However, the resulting partially coherent beam with a smaller value of spatial correlation parameter γ and larger values of separate distance Xd and beam number M is less affected by the turbulence than that with a larger value of y and smaller values of Xd and M. The main results obtained in this paper are explained physically.
基金supported by the National Defense Innovation Foundation of China,Chinese Academy of Sciences(Grant No.CXJJ-16S080)
文摘The entangled orbital angular momentum(OAM) three photons propagating in Kolmogorov weak turbulence are investigated. Here, the single phase screen model is used to study the entanglement evolution of OAM photons. The results indicate that the entangled OAM three-qubit state with higher OAM modes will be more robust against turbulence.Furthermore, it is found that the entangled OAM three-qubit state has a higher overall transmission for small OAM values.
基金supported by the National Natural Science Foundation of China(Grant Nos.61172031 and 61271110)
文摘Based on the modified Rytov theory and the international telecommunication union-radio (ITU-R) slant atmospheric structure constant model, the uniform scintillation index of partially coherent Gaussian-Schell model (GSM) beam propa- gation in the slant path is derived from weak- to strong-turbulence regions considering inner- and outer-scale effects. The effects of wavelength of beams and inner- and outer-scale of turbulence on scintillation are analyzed numerically. Compar- ison between the scintillation of GSM beams under the von Karman spectrum and that of beams under the modified Hill spectrum is made. The results obtained show that the scintillation index obtained under the von Karman spectrum is smaller than that under the modified Hill spectrum. This study can find theory bases for the experiments of the partially coherent GSM beam propagation through atmospheric turbulence.
基金Project supported by the National Natural Science Foundation of China (Grant No. 61172031)
文摘On the basis of the extended Huygens-Fresnel principle and the model of the refractive-index structure constant in the atmospheric turbulence proposed by the International Telecommunication Union-Radio Communication Sector,the characteristics of the partially coherent Gaussian Schell-model(GSM) beams propagating in slanted atmospheric turbulence are studied.Using the cross-spectral density function(CSDF),we derive the expressions for the effective beam radius,the spreading angle,and the average intensity.The variance of the angle-of-arrival fluctuation and the wander effect of the GSM beam in the turbulence are calculated numerically.The influences of the coherence degree,the propagation distance,the propagation height,and the waist radius on the propagation characteristics of the partially coherent beams are discussed and compared with those of the fully coherent Gaussian beams.
文摘From the controlling equations of atmosphere motion, Prandtl's mixing length theory is used to derive the atmospheric turbulence models, such as Burgers equation model and Burgers-KdV equation model. And then the projective Riccati equations are applied to solve these atmospheric turbulence models, where much more patterns are obtained, including solitary wave pattern, singular pattern, and so on.
文摘A new way is proposed to evaluate the influence of atmospheric turbulence on image resolution of airborne and space-borne optical remote sensing system, which is called as arrival angle-method. Applying this method, some engineering examples are selected to analyze the turbulence influences on image resolution based on three different atmospheric turbulence models quantificationally, for the airborne remote sensing system, the resolution errors caused by the atmospheric turbulence are less than 1 cm, and for the space-borne remote sensing system, the errors are around 1 cm. The results are similar to that obtained by the previous Friedmethod. Compared with the Fried-method, the arrival angle-method is rather simple and can be easily used in engineering fields.
基金supported by National Natural Science Foundation of China (Grant No 60477041)Key Project of Science and Technology of Fujian Province of China (Grant No 2007H0027)
文摘This paper studies the propagation properties of Gauss-Bessel beams in a turbulent atmosphere. Based on the extended Huygens-Fresnel principle, it derives the intensity distribution expression for such beams propagating in a turbulent atmosphere. Then the influence of turbulence and source beam parameters on the beam propagation is studied in great detail. It finds that the intensity distribution of Gauss-Bessel beams will change into Gaussian profile in a turbulent atmosphere, and that stronger turbulence and smaller topological charges will lead to a faster changing.
基金supported by the National Defense Pre-research Foundation of China (Grant No. TY7131008)
文摘By using the extended Huygens-Fresnel diffraction integral and the method of expanding the aperture function into a finite sum of complex Caussian functions, an approximate analytical formula of the double-distance propagation for Caussian beam passing through a tilted cat-eye optical lens and going back along the entrance way in a turbulent atmosphere has been derived. Through numerical calculation, the effects of incidence angle, propagation distance, and structure constant on the propagation properties of a Gaussian beam in a turbulent atmosphere are studied. It is found that the incidence angle creates an unsymmetrical average intensity distribution pattern, while the propagation distance and the structure constant can each create a smooth and symmetrical average intensity distribution pattern. The average intensity peak gradually deviates from the centre, and the central average intensity value decreases quickly with the increase in incidence angle, while a larger structure constant can bring the average intensity peak back to the centre.
基金Project supported by the Research Plan Project of the National University of Defense Technology(Grant No.ZK18-0102)the National Natural Science Foundation of China(Grant No.61871389)+1 种基金the State Key Laboratory of Pulsed Power Laser Technology(Grant No.KY21C604)the Postgraduate Scientific Research Innovation Project of Hunan Province(Grant Nos.CX20220007 and CX20230024)。
文摘The optical rotational Doppler effect associated with orbital angular momentum provides a new means for rotational velocity detection.In this paper,we investigate the influence of atmospheric turbulence on the rotational Doppler effect.First,we deduce the generalized formula of the rotational Doppler shift in atmospheric turbulence by mode decomposition.It is found that the rotational Doppler signal frequency spectrum will be broadened,and the bandwidth is related to the turbulence intensity.In addition,as the propagation distance increases,the bandwidth also increases.And when C_(n)^(2)≤5×10^(-15)m^(-2/3)and 2z≤2 km,the rotational Doppler signal frequency spectrum width d and the spiral spectrum width d_(0)satisfy the relationship d=2d_(0-1).Finally,we analyze the influence of mode crosstalk on the rotational Doppler effect,and the results show that it destroys the symmetrical distribution of the rotational Doppler spectrum about 2l·Ω/2π.This theoretical model enables us to better understand the generation of the rotational Doppler frequency and may help us better analyze the influence of the complex atmospheric environment on the rotational Doppler frequency.
文摘A concise expression of the scintillation index is proposed for a plane optical wave and a spherical optical wave both propagating in a turbulent atmosphere with a zero inner scale and a finite inner scale under an arbitrary fluctuation condition. The expression is based on both the results in the Rytov approximation under a weak fluctuation condition and the numerical results in a strong fluctuation regime. The maximum value of the scintillation index and its corresponding Rytov index are evaluated. These quantities are affected by the ratio of the turbulence inner scale to the Fresnel size.
基金supported by the National Natural Science Foundation of China(Grant Nos.61172031 and 61271110)
文摘Based on the extended Huygens-Fresnel principle, a two-frequency, two-point cross-spectral density function of partially coherent Gaussian-Schell model pulse (GSMP) beam propagation in slant atmospheric turbulence is derived. Using the Markov approximation method and on the assumption that (w1 - w2)/(w1 + w2) ≤ 1, the theory obtained is valid for turbulence of any strength and can be applied to narrow-band signals. The expressions for average beam intensity, the beam size, and the two-frequency complex degree of coherence of a GSMP beam are obtained. The numerical results are presented, and the effects of the frequency, initial pulse width, initial beam radius, zenith angle, and outer scales on the complex degree of coherence are discussed. This study provides a better understanding of the second-order statistics of a GSMP beam propagating through atmospheric turbulence in the space-frequency domain.
基金supported by the National Natural Science Foundation of China (Grant No.10874125)
文摘This paper derives the explicit expressions for the average intensity, beam width and angular spread of Gaussian Schell-model (GSM) beams with edge dislocation propagating through atmospheric turbulence along a slant path. The propagation of GSM beams with edge dislocation through horizontal atmospheric turbulence can be treated as a special case through a slant one. The propagation properties of GSM beams with edge dislocation through slant atmospheric turbulence are studied, where the influence of edge dislocation parameters including the slope p and off-axis distance d on the spreading of GSM beams with edge dislocation in atmospheric turbulence is stressed. It shows that the spreading of the intensity profile of GSM beams with edge dislocation along a slant path is smaller than that along a horizontal path in the long-distance atmospheric propagation. The larger the slope |p| and the smaller the off-axis distance |d| are, the less the beam-width spreading and angular spread of GSM beams with edge dislocation are affected by turbulence. The CSM beams with edge dislocation is less affected by turbulence than that of GSM beams without edge dislocation. The results are illustrated numerically and their validity is interpreted physically.
基金National Natural Science Foundation of China(Grant Nos.11525418,91750201,11874046,11974218,11904247,and 11947239)the National Key Research and Development Project of China(Grant No.2019YFA0705000),Innovation Group of Jinan,China(Grant No.2018GXRC010)+3 种基金Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant No.19KJB140017)China Postdoctoral Science Foundation(Grant No.2019M661915)Natural Science Foundation of Shandong Province,China(Grant No.ZR2019QA004)Priority Academic Program Development of Jiangsu Higher Education Institutions,China,Qing Lan Project of Jiangsu Province,China,and Natural Sciences and Engineering Research Council of Canada(Grant No.RGPIN-2018-05497).
文摘We derive theoretically and verify experimentally a concise general expression for the normalized intensity correlations(IC)of partially coherent light in a weak atmospheric turbulence in the fast detector measurement regime.The derived relation reveals that the medium turbulence acts,in general,as an additional noise source enhancing the IC of partially coherent beams.The maximum of the beam IC is,in general,enhanced,causing the fields to exhibit super-Gaussian statistics.On the other hand,the relation indicates that turbulence-induced noise is negligible for sufficiently low coherence light,which reveals the condition for the turbulence-free correlation imaging.