We demonstrate high-performance broadband tunable external-cavity lasers(ECLs) with the metal-organic chemical vapor deposition(MOCVD) grown In As/In P quantum dots(QDs) structures. Without cavity facet coatings, the ...We demonstrate high-performance broadband tunable external-cavity lasers(ECLs) with the metal-organic chemical vapor deposition(MOCVD) grown In As/In P quantum dots(QDs) structures. Without cavity facet coatings, the 3-d B spectral bandwidth of the Fabry–Perot(FP) laser is approximately 10.8 nm, while the tuning bandwidth of ECLs is 45 nm.Combined with the anti-reflection(AR)/high-reflection(HR) facet coating, a 92 nm bandwidth tuning range has been obtained with the wavelength covering from 1414 nm to 1506 nm. In most of the tuning range, the threshold current density is lower than 1.5 k A/cm2. The maximum output power of 6.5 m W was achieved under a 500 m A injection current.All achievements mentioned above were obtained under continuous-wave(CW) mode at room temperature(RT).展开更多
Nonalloyed ohmic contacts regrown by metal-organic chemical vapor deposition are performed on AlGaN/GaN high-electron-mobility transistors. Low ohmic contact resistance of 0.15Ω.mm is obtained. It is found that the s...Nonalloyed ohmic contacts regrown by metal-organic chemical vapor deposition are performed on AlGaN/GaN high-electron-mobility transistors. Low ohmic contact resistance of 0.15Ω.mm is obtained. It is found that the sidewall obliquity near the regrown interface induced by the plasma dry etching has great influence on the total contact resistance. The fabricated device with a 100-nm T-shaped gate demonstrates a maximum drain current density of 0.95 A/mm at Vgs = 1 V and a maximum peak extrinsic transcondutance Gm of 216mS/ram. Moreover, a current gain cut-off frequency fT of 115 GHz and a maximum oscillation frequency fmax of 127 GHz are achieved.展开更多
ZnO thin films were grown on GaAs (001) substrates by metal-organic chemical vapor deposition (MOCVD) at low temperatures ranging from 100 to 400℃. DEZn and 1-12 O were used as the zinc precursor and oxygen precu...ZnO thin films were grown on GaAs (001) substrates by metal-organic chemical vapor deposition (MOCVD) at low temperatures ranging from 100 to 400℃. DEZn and 1-12 O were used as the zinc precursor and oxygen precursor, respectively. The effects of the growth temperatures on the growth characteristics and optical properties of ZnO films were investigated. The X-ray diffraction measurement (XRD) results indicated that all the thin films were grown with highly c- axis orientation. The surface morphologies and crystal properties of the films were critically dependent on the growth temperatures. Although there was no evidence of epitaxial growth, the scanning electron microscopy (SEM) image of ZnO film grown at 400℃ revealed the presence of ZnO microcrystallines with closed packed hexagon structure. The photoluminescence spectrum at room temperature showed only bright band-edge (3. 33eV) emissions with little or no deep-level e- mission related to defects.展开更多
A versatile metal-organic chemical vapor deposition (MOCVD) system was designed and constructed. Copper films were deposited on silicon (100) substrates by chemical vapor deposition (CVD) using Cu(hfac)2 as a ...A versatile metal-organic chemical vapor deposition (MOCVD) system was designed and constructed. Copper films were deposited on silicon (100) substrates by chemical vapor deposition (CVD) using Cu(hfac)2 as a precursor. The growth of Cu nucleus on silicon substrates by H2 reduction of Cu(hfac)2 was studied by atomic force microscopy and scanning electron microscopy. The growth mode of Cu nucleus is initially Volmer-Weber mode (island), and then transforms to Stranski-Rastanov mode (layer-by-layer plus island). The mechanism of Cu nucleation on silicon (100) substrates was further investigated by X-ray photoelectron spectroscopy. From Cu2p, O1s, F1s, Si2p patterns, the observed C=O, OH and CF3/CF2 should belong to Cu(hfac) formed by the thermal dissociation of Cu(hfac)2. H2 reacts with hfac on the surface, producing OH. With its accumulation, OH reacts with hfac, forming HO-hfac, and desorbs, meanwhile, the copper oxide is reduced, and thus the redox reaction between Cu(hafc)2 and H2 occurs.展开更多
Metal-organic chemical vapor deposition (MOCVD) grown ferromagnetic GaMnN films are investigated by photo- luminescence (PL) measurement with a mid-gap excitation wavelength of 405 nm. A sharp PL peak at 1.8 eV is...Metal-organic chemical vapor deposition (MOCVD) grown ferromagnetic GaMnN films are investigated by photo- luminescence (PL) measurement with a mid-gap excitation wavelength of 405 nm. A sharp PL peak at 1.8 eV is found and the PL intensity successively decreases with the addition of Mn, in which the Mn concentration of sample A is below 1% ([Mn]A =0.75%) but its PL intensity is stronger than other samples'. The 1.8-eV PL peak is attributed to the recombination of electrons in the t2 state of the neutral Mn3+ acceptor with holes in the valence band. With Mn concentration increasing, the intensity of the PL peak decreases and the magnetic increment reduces in our samples. The correlation between the PL peak intensity and ferromagnetism of the samples is discussed in combination with the experimental results.展开更多
GaSb quantum dots have been widely applied in optoelectronic devices due to its unique electrical and optical properties.The effects of metal-organic chemical vapor deposition(MOCVD) parameters,such as growth temper...GaSb quantum dots have been widely applied in optoelectronic devices due to its unique electrical and optical properties.The effects of metal-organic chemical vapor deposition(MOCVD) parameters,such as growth temperature and vapour V/Ⅲ ratio[V/Ⅲ ratio means the molar ratio of trimethylgallium(TMGa) and triethylantimony(TESb)],were systematically investigated to achieve GaSb quantum dots with high quality and high density.The features of surface morphology of uncapped GaSb quantum dots were characterized by atomic force microscope(AFM) images.The results show that the surface morphologies of quantum dots are strongly dependent on growth temperature and vapour V/Ⅲ ratio.GaSb quantum dots with an average height of 4.94 nm and a density of 2.45× 1010 cm-2 were obtained by optimizing growth temperature and V/Ⅲ ratio.展开更多
ZnO thin films were grown on Si (111) substrates by low-pressure metal-organic chemical vapor deposition. The crystal structures and electrical properties of as-grown sample were investigated by scanning electron mi...ZnO thin films were grown on Si (111) substrates by low-pressure metal-organic chemical vapor deposition. The crystal structures and electrical properties of as-grown sample were investigated by scanning electron microscopy (SEM) and conductive atomic force microscopy (C-AFM). It can be seen that with increasing growth temperature, the surface morphology of ZnO thin films changed from flake-like to cobblestones-like structure. The current maps were simultaneously recorded with the topography, which was gained by C-AFM contact mode. Conductivity for the off-axis facet planes presented on ZnO grains enhanced. Measurement results indicate that the off-axis facet planes were more electrically active than the c-plane of ZnO flakes or particles probably due to lower Schottky barrier height of the off-axis facet planes.展开更多
Sustainable processes for purifying water,capturing carbon,producing biofuels,operating fuel cells,and performing energy-efficient industrial separations will require next-generation membranes.Solvent-less fabrication...Sustainable processes for purifying water,capturing carbon,producing biofuels,operating fuel cells,and performing energy-efficient industrial separations will require next-generation membranes.Solvent-less fabrication for membranes not only eliminates potential environmental issues with organic solvents,but also solves the swelling problems that occur with delicate polymer substrates.Furthermore,the activation procedures often required for synthesizing microporous materials such as metal–organic frameworks(MOFs)can be reduced when solvent-less vapor-phase approaches are employed.This perspective covers several vacuum deposition processes,including initiated chemical vapor deposition(iCVD),initiated plasma-enhanced chemical vapor deposition(iPECVD),solvent-less vapor deposition followed by in situ polymerization(SLIP),atomic layer deposition(ALD),and molecular layer deposition(MLD).These solvent-less vapor-phase methods are powerful in creating ultrathin selective layers for thin-film composite membranes and advantageous in conformally coating nanoscale pores for the precise modification of pore size and internal functionalities.The resulting membranes have shown promising performance for gas separation,nanofiltration,desalination,and water/oil separation.Further development of novel membrane materials and the scaling up of high-throughput reactors for solvent-less vapor-phase processes are necessary in order to make a real impact on the chemical industry in the future.展开更多
High quality ZnO films are successfully grown on Si(100) substrates by metal-organic chemical vapor deposition at 300℃. The effects of the thickness of the ZnO films on crystal structure, surface morphology,and opt...High quality ZnO films are successfully grown on Si(100) substrates by metal-organic chemical vapor deposition at 300℃. The effects of the thickness of the ZnO films on crystal structure, surface morphology,and optical properties are investigated using X-ray diffraction, scanning probe microscopy,and photoluminescence spectra, respectively. It is shown that the ZnO films grown on Si substrates have a highly-preferential C-axis orientation,but it is difficult to obtain the better structural and optical properties of the ZnO films with the increasing of thickness. It is maybe due to that the grain size and the growth model are changed in the growth process.展开更多
Robust quantum cascade laser(QCL)enduring high temperature continuous-wave(CW)operation is of critical importance for some applications.We report on the realization of lattice-matched InGaAs/InAlAs/InP QCL materials g...Robust quantum cascade laser(QCL)enduring high temperature continuous-wave(CW)operation is of critical importance for some applications.We report on the realization of lattice-matched InGaAs/InAlAs/InP QCL materials grown by metal-organic chemical vapor deposition(MOCVD).High interface quality structures designed for light emission at 8.5μm are achieved by optimizing and precise controlling of growth conditions.A CW output power of 1.04 W at 288 K was obtained from a 4 mm-long and 10μm-wide coated laser.Corresponding maximum wall-plug efficiency and threshold current density were 7.1%and 1.18 kA/cm2,respectively.The device can operate in CW mode up to 408 K with an output power of 160 mW.展开更多
Owing to the adaptability to large scale processing,excellent composition control and film uniformity,the metal-organic chemical vapor deposition(MOCVD) technique is a promising process for high-temperature supercon...Owing to the adaptability to large scale processing,excellent composition control and film uniformity,the metal-organic chemical vapor deposition(MOCVD) technique is a promising process for high-temperature superconductor YBa;Cu;O;(YBCO) preparation.In this technique,the evaporation characteristics and thermostability of adopted precursors in whole process will decide the quality and reproducible results of YBCO film.In the present report,bis(2,2,6,6-tetramethyl-3,5-heptanedionato)copper(II)(Cu(TMHD);) was synthesized by the interaction of copper acetate hydrate with TMHD in methanol solution,and its structure was identified by FTIR,1 H NMR,and EI-MS spectroscopy.Subsequently,thermal property and the kinetics of decomposition were systematically investigated by nonisothermal thermogravimetric analysis methods(TGA) at different heating rates in streams of N;,and the average apparent activation energy of evaporation process was evaluated by the Ozawa,Kissinger,and Friedman methods.The possible conversion function was estimated through the Coats-Redfern method to characterize the evaporation patterns and followed a phase boundary reaction mechanism by the contracting area equation with average activation energy of 85.1 kJ·mol;.展开更多
Si-dopedβ-Ga_(2)O_(3)films are fabricated through metal-organic chemical vapor deposition(MOCVD).Solar-blind ultraviolet(UV)photodetector(PD)based on the films is fabricated by standard photolithography,and the photo...Si-dopedβ-Ga_(2)O_(3)films are fabricated through metal-organic chemical vapor deposition(MOCVD).Solar-blind ultraviolet(UV)photodetector(PD)based on the films is fabricated by standard photolithography,and the photodetection properties are investigated.The results show that the photocurrent increases to 11.2 mA under 200μW·cm^(-2)254 nm illumination and±20 V bias,leading to photo-responsivity as high as 788 A·W^(-1).The Si-dopedβ-Ga2O3-based PD is promised to perform solar-blind photodetection with high performance.展开更多
In this paper,Raman shifts of a-plane GaN layers grown on r-plane sapphire substrates by low-pressure metal-organic chemical vapor deposition(LPMOCVD) are investigated.We compare the crystal qualities and study the ...In this paper,Raman shifts of a-plane GaN layers grown on r-plane sapphire substrates by low-pressure metal-organic chemical vapor deposition(LPMOCVD) are investigated.We compare the crystal qualities and study the relationships between Raman shift and temperature for conventional a-plane GaN epilayer and insertion AlN/AlGaN superlattice layers for a-plane GaN epilayer using temperature-dependent Raman scattering in a temperature range from 83 K to 503 K.The temperature-dependences of GaN phonon modes(A1(TO),E2(high),and E1(TO)) and the linewidths of E2(high) phonon peak are studied.The results indicate that there exist two mechanisms between phonon peaks in the whole temperature range,and the relationship can be fitted to the pseudo-Voigt function.From analytic results we find a critical temperature existing in the relationship,which can characterize the anharmonic effects of a-plane GaN in different temperature ranges.In the range of higher temperature,the relationship exhibits an approximately linear behavior,which is consistent with the analyzed results theoretically.展开更多
Nonpolar (1120) GaN films are grown on the etched a-plane GaN substrates via metalorganic vapor phase epitaxy. High-resolution X-ray diffraction analysis shows great decreases in the full width at half maximum of th...Nonpolar (1120) GaN films are grown on the etched a-plane GaN substrates via metalorganic vapor phase epitaxy. High-resolution X-ray diffraction analysis shows great decreases in the full width at half maximum of the samples grown on etched substrates compared with those of the sample without etching, both on-axis and off-axis, indicating the reduced dislocation densities and improved crystalline quality of these samples. The spatial mapping of the E2 (high) phonon mode demonstrates the smaller line width with a black background in the wing region, which testifies the reduced dislocation densities and enhanced crystalline quality of the epitaxial lateral overgrowth areas. Raman scattering spectra of the E2 (high) peaks exhibit in-plane compressive stress for all the overgrowth samples, and the E2 (high) peaks of samples grown on etched substrates shift toward the lower frequency range, indicating the relaxations of in-plane stress in these GaN films. Furthermore, room temperature photoluminescence measurement demonstrates a significant decrease in the yellow-band emission intensity of a-plane GaN grown on etched templates, which also illustrates the better optical properties of these samples.展开更多
In this work, a hetero-epitaxial Al0.49In0.51As/Ga0.47In0.53 As metamorphic high electron mobility transistor(mHEMT) grown by metal–organic chemical vapor deposition(MOCVD) on p-type silicon substrate has been succes...In this work, a hetero-epitaxial Al0.49In0.51As/Ga0.47In0.53 As metamorphic high electron mobility transistor(mHEMT) grown by metal–organic chemical vapor deposition(MOCVD) on p-type silicon substrate has been successfully demonstrated. A novel AlGaAs/Al As period multiple quantum well(MQW) composite buffer scheme is developed to effectively tune the leakage current from the buffer layer. The quantized room-temperature Hall mobility of the twodimensional electron gas(2DEG) is larger than 7800 cm2/V·s, with an average sheet carrier density of 4.6×1012cm-2.Two-stage electron beam(EB) lithography technology by a JBX-6300 e-beam lithography system is developed to realize a 0.13-μm m HEMT device on Si substrate. A maximum transconductance Gm of up to 854 mS/mm is achieved, and is comparable to that of m HEMT technology on Ga As substrate with the same dimension. The fTand fmax are 135 GHz and120 GHz, respectively.展开更多
We demonstrate two short-wavelength infrared avalanche photodiodes based on InAs/GaSb superlattice grown by metal-organic chemical vapor deposition.The difference between the two devices,namely,p+n-n+and p+nn-n+,is th...We demonstrate two short-wavelength infrared avalanche photodiodes based on InAs/GaSb superlattice grown by metal-organic chemical vapor deposition.The difference between the two devices,namely,p+n-n+and p+nn-n+,is that the p+nn-n+device possesses an additional middle-doped layer to separate the multiplication region from the absorption region.By properly controlling the electric field distribution in the p+nn-n+device,an electric field of 906 kV/cm has been achieved,which is 2.6 times higher than that in the p+n-n+device.At a reverse bias of-0.1 V at 77 K,both devices show a 100%cut-off wavelength of 2.25μm.The p+n-n+and p+nn-n+show a dark current density of 1.5×10^-7 A/cm^2 and 1.8×10^-8 A/cm^2,and a peak responsivity about 0.35 A/W and 0.40 A/W at 1.5μm,respectively.A maximum multiplication gain of 55 is achieved in the p+nn-n+device while the value is only less than 2 in the p+n-n+device.Exponential nature of the gain characteristic as a function of reverse bias confirms a single carrier hole dominated impact ionization.展开更多
The performance of a multiple quantum well (MQW) InGaN solar cell with double indium content is investigated. It is found that the adoption of a double indium structure can effectively broaden the spectral response ...The performance of a multiple quantum well (MQW) InGaN solar cell with double indium content is investigated. It is found that the adoption of a double indium structure can effectively broaden the spectral response of the external quantum efficiencies and optimize the overall performance of the solar cell. Under AM1.5G illumination, the short-circuit current density (Jsc) and conversion efficiency of the solar cell are enhanced by 65% and 13% compared with those of a normal single-indium-content MQW solar cell. These improvements are mainly attributed to the expansion of the absorption spectrum and better extraction efficiency of the photon-generated carriers induced by higher polarization.展开更多
In this paper, we investigate the effect of pressure on the growth mode of high quality (10-11) GaN using an epi- taxial lateral over growth (ELO) technique by metal organic chemical vapor deposition (MOCVD). Tw...In this paper, we investigate the effect of pressure on the growth mode of high quality (10-11) GaN using an epi- taxial lateral over growth (ELO) technique by metal organic chemical vapor deposition (MOCVD). Two pressure growth conditions, high pressure (HP) 1013 mbar and low pressure growth (LP) 500 mbar, are employed during growth. In the high pressure growth conditions, the crystal quality is improved by decreasing the dislocation and stack fault density in the strip connection locations. The room temperature photoluminescence measurement also shows that the light emission intensity increases three times using the HP growth condition compared with that using the LP growth conditions. In the low temperature (77 K) photoluminescence, the defects-related peaks are very obvious in the low pressure growth samples. This result also indicates that the crystal quality is improved using the high pressure growth conditions.展开更多
ZnO(002) films with different thicknesses ranging from 7 to 300 nm were grown on sapphire(006) substrates via metal-organic chemical vapor deposition (MOCVD). The two-dimensional(2D) planar layer and the three...ZnO(002) films with different thicknesses ranging from 7 to 300 nm were grown on sapphire(006) substrates via metal-organic chemical vapor deposition (MOCVD). The two-dimensional(2D) planar layer and the three-dimensional(3D) island layer were studied by using of X-ray diffraction(XRD) rocking curves and atomic force microscopy (AFM). The room temperature photoluminescence (PL) spectra show a blue shift of the peak positions of the uhraviolet(UV) emission with increasing film thickness. The blue shift is remarkably high(393-380 nm) when an increase in film thickness(7-15 nm) is accompanied by the change of structure from a 2D planar layer to a 3D island layer. The PL spectra at 77 K also indicate that there are different transition mechanisms in the film thickness from a 2D planar layer to a 3D island layer near the 2D layer region.展开更多
We report on the Au-assisted vapour-liquid-solid (VLS) growth of GaAs/InxGal xAs/GaAs (0.2 ≤ x ≤1) axial double-heterostructure nanowires on GaAs ( 111 ) B substrates via the metal-organic chemical vapor depos...We report on the Au-assisted vapour-liquid-solid (VLS) growth of GaAs/InxGal xAs/GaAs (0.2 ≤ x ≤1) axial double-heterostructure nanowires on GaAs ( 111 ) B substrates via the metal-organic chemical vapor deposition (MOCVD) technique. The influence of the indium (In) content in an Au particle on the morphology of nanowires is investigated systematically. A short period of pre-introduced In precursor before the growth of InxGal xAs segment, coupled with a group III precursor interruption, is conducive to obtaining symmetrical heterointerfaces as well as the desired In/Ga ratio in the InxGa1-xAs section. The nanowire morphology, such as kinking and tapering, are thought to be related to the In composition in the catalyst alloy as well as the VLS growth mechanism.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.61974141)Tianjin Municipal Science and Technology BureauScience and Technology Innovation Bureau of China-Singapore Tianjin Eco-City。
文摘We demonstrate high-performance broadband tunable external-cavity lasers(ECLs) with the metal-organic chemical vapor deposition(MOCVD) grown In As/In P quantum dots(QDs) structures. Without cavity facet coatings, the 3-d B spectral bandwidth of the Fabry–Perot(FP) laser is approximately 10.8 nm, while the tuning bandwidth of ECLs is 45 nm.Combined with the anti-reflection(AR)/high-reflection(HR) facet coating, a 92 nm bandwidth tuning range has been obtained with the wavelength covering from 1414 nm to 1506 nm. In most of the tuning range, the threshold current density is lower than 1.5 k A/cm2. The maximum output power of 6.5 m W was achieved under a 500 m A injection current.All achievements mentioned above were obtained under continuous-wave(CW) mode at room temperature(RT).
基金Supported by the National Natural Science Foundation of China under Grant No 61306113
文摘Nonalloyed ohmic contacts regrown by metal-organic chemical vapor deposition are performed on AlGaN/GaN high-electron-mobility transistors. Low ohmic contact resistance of 0.15Ω.mm is obtained. It is found that the sidewall obliquity near the regrown interface induced by the plasma dry etching has great influence on the total contact resistance. The fabricated device with a 100-nm T-shaped gate demonstrates a maximum drain current density of 0.95 A/mm at Vgs = 1 V and a maximum peak extrinsic transcondutance Gm of 216mS/ram. Moreover, a current gain cut-off frequency fT of 115 GHz and a maximum oscillation frequency fmax of 127 GHz are achieved.
文摘ZnO thin films were grown on GaAs (001) substrates by metal-organic chemical vapor deposition (MOCVD) at low temperatures ranging from 100 to 400℃. DEZn and 1-12 O were used as the zinc precursor and oxygen precursor, respectively. The effects of the growth temperatures on the growth characteristics and optical properties of ZnO films were investigated. The X-ray diffraction measurement (XRD) results indicated that all the thin films were grown with highly c- axis orientation. The surface morphologies and crystal properties of the films were critically dependent on the growth temperatures. Although there was no evidence of epitaxial growth, the scanning electron microscopy (SEM) image of ZnO film grown at 400℃ revealed the presence of ZnO microcrystallines with closed packed hexagon structure. The photoluminescence spectrum at room temperature showed only bright band-edge (3. 33eV) emissions with little or no deep-level e- mission related to defects.
基金ACKN0WLEDGMENT This work was supported by the National Natural Science Foundation of China (No.20576112).
文摘A versatile metal-organic chemical vapor deposition (MOCVD) system was designed and constructed. Copper films were deposited on silicon (100) substrates by chemical vapor deposition (CVD) using Cu(hfac)2 as a precursor. The growth of Cu nucleus on silicon substrates by H2 reduction of Cu(hfac)2 was studied by atomic force microscopy and scanning electron microscopy. The growth mode of Cu nucleus is initially Volmer-Weber mode (island), and then transforms to Stranski-Rastanov mode (layer-by-layer plus island). The mechanism of Cu nucleation on silicon (100) substrates was further investigated by X-ray photoelectron spectroscopy. From Cu2p, O1s, F1s, Si2p patterns, the observed C=O, OH and CF3/CF2 should belong to Cu(hfac) formed by the thermal dissociation of Cu(hfac)2. H2 reacts with hfac on the surface, producing OH. With its accumulation, OH reacts with hfac, forming HO-hfac, and desorbs, meanwhile, the copper oxide is reduced, and thus the redox reaction between Cu(hafc)2 and H2 occurs.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61204008,11075176,and 60976090)the National Key Basic Research Special Foundation of China(Grant No.2013CB328705)
文摘Metal-organic chemical vapor deposition (MOCVD) grown ferromagnetic GaMnN films are investigated by photo- luminescence (PL) measurement with a mid-gap excitation wavelength of 405 nm. A sharp PL peak at 1.8 eV is found and the PL intensity successively decreases with the addition of Mn, in which the Mn concentration of sample A is below 1% ([Mn]A =0.75%) but its PL intensity is stronger than other samples'. The 1.8-eV PL peak is attributed to the recombination of electrons in the t2 state of the neutral Mn3+ acceptor with holes in the valence band. With Mn concentration increasing, the intensity of the PL peak decreases and the magnetic increment reduces in our samples. The correlation between the PL peak intensity and ferromagnetism of the samples is discussed in combination with the experimental results.
基金Supported by the National Natural Science Foundation of China(No.61076010) and the Program of the State Key Laboratory on Integrated Optoelectronics, China(No. IOSKL2012ZZ13).
文摘GaSb quantum dots have been widely applied in optoelectronic devices due to its unique electrical and optical properties.The effects of metal-organic chemical vapor deposition(MOCVD) parameters,such as growth temperature and vapour V/Ⅲ ratio[V/Ⅲ ratio means the molar ratio of trimethylgallium(TMGa) and triethylantimony(TESb)],were systematically investigated to achieve GaSb quantum dots with high quality and high density.The features of surface morphology of uncapped GaSb quantum dots were characterized by atomic force microscope(AFM) images.The results show that the surface morphologies of quantum dots are strongly dependent on growth temperature and vapour V/Ⅲ ratio.GaSb quantum dots with an average height of 4.94 nm and a density of 2.45× 1010 cm-2 were obtained by optimizing growth temperature and V/Ⅲ ratio.
基金financially supported by the National Natural Science Foundation of China (Nos. 11175038 and 51102036)the Fundamental Research Funds for the Central Universities (No. DC110314)
文摘ZnO thin films were grown on Si (111) substrates by low-pressure metal-organic chemical vapor deposition. The crystal structures and electrical properties of as-grown sample were investigated by scanning electron microscopy (SEM) and conductive atomic force microscopy (C-AFM). It can be seen that with increasing growth temperature, the surface morphology of ZnO thin films changed from flake-like to cobblestones-like structure. The current maps were simultaneously recorded with the topography, which was gained by C-AFM contact mode. Conductivity for the off-axis facet planes presented on ZnO grains enhanced. Measurement results indicate that the off-axis facet planes were more electrically active than the c-plane of ZnO flakes or particles probably due to lower Schottky barrier height of the off-axis facet planes.
基金Zhejiang University,the research grant from the State Key Laboratory of Chemical Engineering(SKL-ChE-19T04)the funding support from the Institute of Zhejiang University-Quzhou(IZQ2019-KJ-011)Junjie Zhao also acknowledges the funding from the National Natural Science Foundation of China(21908194 and 21938011).
文摘Sustainable processes for purifying water,capturing carbon,producing biofuels,operating fuel cells,and performing energy-efficient industrial separations will require next-generation membranes.Solvent-less fabrication for membranes not only eliminates potential environmental issues with organic solvents,but also solves the swelling problems that occur with delicate polymer substrates.Furthermore,the activation procedures often required for synthesizing microporous materials such as metal–organic frameworks(MOFs)can be reduced when solvent-less vapor-phase approaches are employed.This perspective covers several vacuum deposition processes,including initiated chemical vapor deposition(iCVD),initiated plasma-enhanced chemical vapor deposition(iPECVD),solvent-less vapor deposition followed by in situ polymerization(SLIP),atomic layer deposition(ALD),and molecular layer deposition(MLD).These solvent-less vapor-phase methods are powerful in creating ultrathin selective layers for thin-film composite membranes and advantageous in conformally coating nanoscale pores for the precise modification of pore size and internal functionalities.The resulting membranes have shown promising performance for gas separation,nanofiltration,desalination,and water/oil separation.Further development of novel membrane materials and the scaling up of high-throughput reactors for solvent-less vapor-phase processes are necessary in order to make a real impact on the chemical industry in the future.
文摘High quality ZnO films are successfully grown on Si(100) substrates by metal-organic chemical vapor deposition at 300℃. The effects of the thickness of the ZnO films on crystal structure, surface morphology,and optical properties are investigated using X-ray diffraction, scanning probe microscopy,and photoluminescence spectra, respectively. It is shown that the ZnO films grown on Si substrates have a highly-preferential C-axis orientation,but it is difficult to obtain the better structural and optical properties of the ZnO films with the increasing of thickness. It is maybe due to that the grain size and the growth model are changed in the growth process.
基金The authors would thank Ping Liang and Ying Hu for their help with device fabrication.This work was supported by the National Key Research and Development Program of China(Grant No.2020YFB0408401)in part by the National Natural Science Foundation of China(Grant Nos.61991430,61774146,61790583,61734006,61835011,61674144,61774150,61805168)+1 种基金in part by Beijing Municipal Science&Technology Commission(Grant No.Z201100004020006)in part by the Key Projects of the Chinese Academy of Sciences(Grant Nos.2018147,YJKYYQ20190002,QYZDJ-SSW-JSC027,XDB43000000,ZDKYYQ20200006).
文摘Robust quantum cascade laser(QCL)enduring high temperature continuous-wave(CW)operation is of critical importance for some applications.We report on the realization of lattice-matched InGaAs/InAlAs/InP QCL materials grown by metal-organic chemical vapor deposition(MOCVD).High interface quality structures designed for light emission at 8.5μm are achieved by optimizing and precise controlling of growth conditions.A CW output power of 1.04 W at 288 K was obtained from a 4 mm-long and 10μm-wide coated laser.Corresponding maximum wall-plug efficiency and threshold current density were 7.1%and 1.18 kA/cm2,respectively.The device can operate in CW mode up to 408 K with an output power of 160 mW.
基金supported by the Major State Basic Research Development Program of China (973 Program) (No.2011CBA00105)the National Natural Science Foundation of China (Nos. 51002149 and 21101151)
文摘Owing to the adaptability to large scale processing,excellent composition control and film uniformity,the metal-organic chemical vapor deposition(MOCVD) technique is a promising process for high-temperature superconductor YBa;Cu;O;(YBCO) preparation.In this technique,the evaporation characteristics and thermostability of adopted precursors in whole process will decide the quality and reproducible results of YBCO film.In the present report,bis(2,2,6,6-tetramethyl-3,5-heptanedionato)copper(II)(Cu(TMHD);) was synthesized by the interaction of copper acetate hydrate with TMHD in methanol solution,and its structure was identified by FTIR,1 H NMR,and EI-MS spectroscopy.Subsequently,thermal property and the kinetics of decomposition were systematically investigated by nonisothermal thermogravimetric analysis methods(TGA) at different heating rates in streams of N;,and the average apparent activation energy of evaporation process was evaluated by the Ozawa,Kissinger,and Friedman methods.The possible conversion function was estimated through the Coats-Redfern method to characterize the evaporation patterns and followed a phase boundary reaction mechanism by the contracting area equation with average activation energy of 85.1 kJ·mol;.
基金the National Natural Science Foundation of China(Grant Nos.61774019 and 51572033)the Fund of State Key Laboratory of Information Photonics and Optical Communications(BUPT)the Fundamental Research Funds for the Central Universities,China.
文摘Si-dopedβ-Ga_(2)O_(3)films are fabricated through metal-organic chemical vapor deposition(MOCVD).Solar-blind ultraviolet(UV)photodetector(PD)based on the films is fabricated by standard photolithography,and the photodetection properties are investigated.The results show that the photocurrent increases to 11.2 mA under 200μW·cm^(-2)254 nm illumination and±20 V bias,leading to photo-responsivity as high as 788 A·W^(-1).The Si-dopedβ-Ga2O3-based PD is promised to perform solar-blind photodetection with high performance.
基金Project supported by the Fundamental Research Funds for the Central Universities,China (Grant No. K50511250002)the National Key Science & Technology Special Project,China (Grant No. 2008ZX01002-002)+1 种基金the Major Program and State Key Program of the National Natural Science Foundation of China (Grant Nos. 60890191 and 60736033)the Science Fund for Youths Scholars (Grant Nos. 61204006)
文摘In this paper,Raman shifts of a-plane GaN layers grown on r-plane sapphire substrates by low-pressure metal-organic chemical vapor deposition(LPMOCVD) are investigated.We compare the crystal qualities and study the relationships between Raman shift and temperature for conventional a-plane GaN epilayer and insertion AlN/AlGaN superlattice layers for a-plane GaN epilayer using temperature-dependent Raman scattering in a temperature range from 83 K to 503 K.The temperature-dependences of GaN phonon modes(A1(TO),E2(high),and E1(TO)) and the linewidths of E2(high) phonon peak are studied.The results indicate that there exist two mechanisms between phonon peaks in the whole temperature range,and the relationship can be fitted to the pseudo-Voigt function.From analytic results we find a critical temperature existing in the relationship,which can characterize the anharmonic effects of a-plane GaN in different temperature ranges.In the range of higher temperature,the relationship exhibits an approximately linear behavior,which is consistent with the analyzed results theoretically.
基金Project supported by the National Natural Science Foundation of China(Grant No.61204006)the Fundamental Research Funds for the Central Universities,China(Grant No.K50511250002)the National Key Science & Technology Special Project,China(Grant No.2008ZX01002-002)
文摘Nonpolar (1120) GaN films are grown on the etched a-plane GaN substrates via metalorganic vapor phase epitaxy. High-resolution X-ray diffraction analysis shows great decreases in the full width at half maximum of the samples grown on etched substrates compared with those of the sample without etching, both on-axis and off-axis, indicating the reduced dislocation densities and improved crystalline quality of these samples. The spatial mapping of the E2 (high) phonon mode demonstrates the smaller line width with a black background in the wing region, which testifies the reduced dislocation densities and enhanced crystalline quality of the epitaxial lateral overgrowth areas. Raman scattering spectra of the E2 (high) peaks exhibit in-plane compressive stress for all the overgrowth samples, and the E2 (high) peaks of samples grown on etched substrates shift toward the lower frequency range, indicating the relaxations of in-plane stress in these GaN films. Furthermore, room temperature photoluminescence measurement demonstrates a significant decrease in the yellow-band emission intensity of a-plane GaN grown on etched templates, which also illustrates the better optical properties of these samples.
基金supported by the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.61401373)the Fundamental Research Funds for Central University,China(Grant Nos.XDJK2013B004 and 2362014XK13)the Chongqing Natural Science Foundation,China(Grant No.cstc2014jcyj A40038)
文摘In this work, a hetero-epitaxial Al0.49In0.51As/Ga0.47In0.53 As metamorphic high electron mobility transistor(mHEMT) grown by metal–organic chemical vapor deposition(MOCVD) on p-type silicon substrate has been successfully demonstrated. A novel AlGaAs/Al As period multiple quantum well(MQW) composite buffer scheme is developed to effectively tune the leakage current from the buffer layer. The quantized room-temperature Hall mobility of the twodimensional electron gas(2DEG) is larger than 7800 cm2/V·s, with an average sheet carrier density of 4.6×1012cm-2.Two-stage electron beam(EB) lithography technology by a JBX-6300 e-beam lithography system is developed to realize a 0.13-μm m HEMT device on Si substrate. A maximum transconductance Gm of up to 854 mS/mm is achieved, and is comparable to that of m HEMT technology on Ga As substrate with the same dimension. The fTand fmax are 135 GHz and120 GHz, respectively.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61874179,61804161,and 61975121)the National Key Research and Development Program of China(Grant No.2019YFB2203400).
文摘We demonstrate two short-wavelength infrared avalanche photodiodes based on InAs/GaSb superlattice grown by metal-organic chemical vapor deposition.The difference between the two devices,namely,p+n-n+and p+nn-n+,is that the p+nn-n+device possesses an additional middle-doped layer to separate the multiplication region from the absorption region.By properly controlling the electric field distribution in the p+nn-n+device,an electric field of 906 kV/cm has been achieved,which is 2.6 times higher than that in the p+n-n+device.At a reverse bias of-0.1 V at 77 K,both devices show a 100%cut-off wavelength of 2.25μm.The p+n-n+and p+nn-n+show a dark current density of 1.5×10^-7 A/cm^2 and 1.8×10^-8 A/cm^2,and a peak responsivity about 0.35 A/W and 0.40 A/W at 1.5μm,respectively.A maximum multiplication gain of 55 is achieved in the p+nn-n+device while the value is only less than 2 in the p+n-n+device.Exponential nature of the gain characteristic as a function of reverse bias confirms a single carrier hole dominated impact ionization.
基金supported by the National Natural Science Foundation of China(Grant No.51172079)the Science and Technology Program of Guangdong Province,China(Grant Nos.2010B090400456 and 2010A081002002)the Science and Technology Program of Guangzhou City,China(Grant No.2011J4300018)
文摘The performance of a multiple quantum well (MQW) InGaN solar cell with double indium content is investigated. It is found that the adoption of a double indium structure can effectively broaden the spectral response of the external quantum efficiencies and optimize the overall performance of the solar cell. Under AM1.5G illumination, the short-circuit current density (Jsc) and conversion efficiency of the solar cell are enhanced by 65% and 13% compared with those of a normal single-indium-content MQW solar cell. These improvements are mainly attributed to the expansion of the absorption spectrum and better extraction efficiency of the photon-generated carriers induced by higher polarization.
基金support by the National High Technology Research and Development Program of China(Green Laser)
文摘In this paper, we investigate the effect of pressure on the growth mode of high quality (10-11) GaN using an epi- taxial lateral over growth (ELO) technique by metal organic chemical vapor deposition (MOCVD). Two pressure growth conditions, high pressure (HP) 1013 mbar and low pressure growth (LP) 500 mbar, are employed during growth. In the high pressure growth conditions, the crystal quality is improved by decreasing the dislocation and stack fault density in the strip connection locations. The room temperature photoluminescence measurement also shows that the light emission intensity increases three times using the HP growth condition compared with that using the LP growth conditions. In the low temperature (77 K) photoluminescence, the defects-related peaks are very obvious in the low pressure growth samples. This result also indicates that the crystal quality is improved using the high pressure growth conditions.
基金Supported by the National Natural Science Foundation of China(Nos. 20071013 and 20301007).
文摘ZnO(002) films with different thicknesses ranging from 7 to 300 nm were grown on sapphire(006) substrates via metal-organic chemical vapor deposition (MOCVD). The two-dimensional(2D) planar layer and the three-dimensional(3D) island layer were studied by using of X-ray diffraction(XRD) rocking curves and atomic force microscopy (AFM). The room temperature photoluminescence (PL) spectra show a blue shift of the peak positions of the uhraviolet(UV) emission with increasing film thickness. The blue shift is remarkably high(393-380 nm) when an increase in film thickness(7-15 nm) is accompanied by the change of structure from a 2D planar layer to a 3D island layer. The PL spectra at 77 K also indicate that there are different transition mechanisms in the film thickness from a 2D planar layer to a 3D island layer near the 2D layer region.
基金supported by the National Basic Research Program of China (Grant No. 2010CB327600)the National Natural Science Foundation of China (Grant Nos. 61020106007 and 61077049)+2 种基金the International Science & Technology Cooperation Program of China (Grant No. 2011DFR11010)the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20120005110011)the 111 Program of China (Grant No. B07005)
文摘We report on the Au-assisted vapour-liquid-solid (VLS) growth of GaAs/InxGal xAs/GaAs (0.2 ≤ x ≤1) axial double-heterostructure nanowires on GaAs ( 111 ) B substrates via the metal-organic chemical vapor deposition (MOCVD) technique. The influence of the indium (In) content in an Au particle on the morphology of nanowires is investigated systematically. A short period of pre-introduced In precursor before the growth of InxGal xAs segment, coupled with a group III precursor interruption, is conducive to obtaining symmetrical heterointerfaces as well as the desired In/Ga ratio in the InxGa1-xAs section. The nanowire morphology, such as kinking and tapering, are thought to be related to the In composition in the catalyst alloy as well as the VLS growth mechanism.