The long-period-stacking-ordered(LPSO)structure affects the mechanical,corrosion and hydrolysis properties of Mg alloys.The current work employs high angle annular dark field-scanning transmission electron microscopy(...The long-period-stacking-ordered(LPSO)structure affects the mechanical,corrosion and hydrolysis properties of Mg alloys.The current work employs high angle annular dark field-scanning transmission electron microscopy(HAADF-STEM)and atom probe tomography(APT)to investigate the structural and local chemical information of LPSO phases formed in Mg-Ni-Y/Sm ternary alloys after extended isothermal annealing.Depending on the alloying elements and their concentrations,Mg-Ni-Y/Sm develops a two-phase LPSO+α-Mg structure in which the LPSO phase contains defects,hybrid LPSO structure,and Mg insertions.HAADF-STEM and APT indicate non-stoichiometric LPSO with incomplete Ni_(6)(Y/Sm)_(8) clusters.In addition,the APT quantitatively determines the local composition of LPSO and confirms the presence of Ni within the Mg bonding layers.These results provide insight into a better understanding of the structure and hydrolysis properties of LPSO-Mg alloys.展开更多
The phase partition and site preference of Re atoms in a ternary Ni-Al-Re model alloy,including the electronic structure of different Re configurations,are investigated with first-principles calculations and atom prob...The phase partition and site preference of Re atoms in a ternary Ni-Al-Re model alloy,including the electronic structure of different Re configurations,are investigated with first-principles calculations and atom probe tomography.The Re distribution of single,nearest neighbor(NN),next-nearest neighbor(NNN),and cluster configurations are respectively designed in the models withγandγphases.The results show that the Re atoms tend to enteringγphase and the Re atoms prefer to occupy the Al sites inγphase.The Re cluster with a combination of NN and NNN Re-Re pair configuration is not preferred than the isolated Re atom in the Ni-based superalloys,and the configuration with isolated Re atom is more preferred in the system.Especially,the electronic states are analyzed and the energetic parameters are calculated.The electronic structure analyses show there exists strong Ni-Re electronic interaction and it is mainly contributed by the d-d hybridization.The characteristic features of the electronic states of the Re doping effects are also given.It is also found that Re atoms prefer the Al sites inγside at the interface.The density of states at or near the Fermi level and the d-d hybridizations of NN Ni-Re are found to be important in the systems.展开更多
Aluminum-based alloys play a key role in modern engineering and are widely used in construction components in aircraft, automobiles and other means of transportation due to their light weight and superior mechanical p...Aluminum-based alloys play a key role in modern engineering and are widely used in construction components in aircraft, automobiles and other means of transportation due to their light weight and superior mechanical properties. Introduction of different nano-structure features can improve the service and the physical properties of such alloys. An improvement of an Al-based alloy has been performed based on the understanding of the relationships among compositions, processing, microstructural characteristics and properties. Knowledge of the decomposition process of the microstructure during the precipitation reaction is particularly important for future technical developments. The objective of this study is to investigate the nano-scale chemical composition in the Al-Cu, Al-Li and Al-Li-Cu alloys during the early stage of the precipitation sequence and to describe whether this compositional difference correlates with variations in the observed precipitation kinetics. Investigation of the fine scale segregation effects of dilute solutes in aluminum alloys which were experienced different heat treatments by using atom probe tomography has been achieved. The results show that an Al-1.7 at.% Cu alloy requires a long ageing time of approximately 8 h at 160°C to allow the diffusion of Cu atoms into Al matrix. For the Al-8.2 at.% Li alloy, a combination of both the natural ageing condition (48 h at room temperature) and a short artificial ageing condition (5 min at 160°C) induces increasing on the number density of the Li clusters and hence increase number of precipitated particles. Applying this combination of natural ageing and short artificial ageing conditions onto the ternary Al-4 at.% Li-1.7 at.% Cu alloy induces the formation of a Cu-rich phase. Increasing the Li content in the ternary alloy up to 8 at.% and increasing the ageing time to 30 min resulted in the precipitation processes ending with δ' particles. Thus the results contribute to the understanding of Al-alloy design.展开更多
Granulitic lunar meteorites offer rare insights into the timing and nature of igneous,metamorphic and impact processes in the lunar crust.Accurately dating the different events recorded by these materials is very chal...Granulitic lunar meteorites offer rare insights into the timing and nature of igneous,metamorphic and impact processes in the lunar crust.Accurately dating the different events recorded by these materials is very challenging,however,due to low trace element abundances (e.g.Sm,Nd,Lu,Hf),rare micrometerscale U-Th-bearing accessory minerals,and disturbed Ar-Ar systematics following a multi-stage history of shock and thermal metamorphism.Here we report on micro-baddeleyite grains in granulitic mafic breccia NWA 3163 for the first time and show that targeted microstructural analysis (electron backscatter diffraction) and nanoscale geochronology (atom probe tomography) can overcome these barriers to lunar chronology.A twinned (-90°/<401>) baddeleyite domain yields a 232Th/208Pb age of 4328 ± 309 Ma,which overlaps with a robust secondary ion mass spectrometry (SIMS) 207Pb/206Pb age of 4308± 18.6 Ma and is interpreted here as the crystallization age for the igneous protolith of NWA 3163.A second microstructural domain,< 2 mm in width,contains patchy overprinting baddeleyite and yields a Th-Pb age of 2175± 143 Ma,interpreted as dating the last substantial impact event to affect the sample.This finding demonstrates the potential of combining microstructural characterization with nanoscale geochronology when resolving complex P-T-t histories in planetary materials,here yielding the oldest measured crystallization age for components of lunar granulite NWA 3163 and placing further constraints on the formation and evolution of lunar crust.展开更多
Herein,the evolution of long-period stacking ordered(LPSO)phases in the as-cast Mg-6Gd-1Zn-0.6Zr(wt.%)alloy are investigated via transmission electron microscopy(TEM)and atom probe tomography(APT).The TEM results reve...Herein,the evolution of long-period stacking ordered(LPSO)phases in the as-cast Mg-6Gd-1Zn-0.6Zr(wt.%)alloy are investigated via transmission electron microscopy(TEM)and atom probe tomography(APT).The TEM results reveal that two types of LPSO phase(a bulky interdendritic phase and a plate-like matrix LPSO phase)are formed in the as-cast sample.Most of the LPSO phases are confirmed to be of the 14H type,with a smaller proportion being of the 18R LPSO.Further,the APT results reveal that the composition of the interdendritic LPSO phase is closer to that of the ideal 14H phase compared to the matrix LPSO phase,and both the interdendritic and matrix LPSO phases exhibit a Gd/Zn ratio of 2.5,thereby indicating a deficient Zn content compared to the ideal 14H phase(i.e.,1.3).In addition,the influence of the LPSO phases on the deformation behavior is investigated at different compressive plastic strains using electron backscatter diffraction(EBSD)analysis to reveal twinning and slip behavior during deformation.The results indicate that the LPSO phase induces additional work hardening in the late stage of deformation via the suppression of{1011}compressive twinning and the activation of non-basal slip systems.展开更多
β-Nb is a typical second phase in Zr-Nb-based alloys used as fuel claddings in water-cooled nuclear reactors. The segregation of alloying element Fe may affect the corrosion resistance of Zr-Nb-based alloys. In this ...β-Nb is a typical second phase in Zr-Nb-based alloys used as fuel claddings in water-cooled nuclear reactors. The segregation of alloying element Fe may affect the corrosion resistance of Zr-Nb-based alloys. In this work, the Fe segregation at the interface between β-Nb phase and a-Zr matrix in Zr-2.5Nb alloy was studied using atom probe tomography and focused ion beam. The results suggested that the Fe concentration was much lower than Nb concentration in a-Zr matrix, while Fe selectively segregated at the β-Nb/a-Zr phase interface, leading to a Fe concentration peak at some interfaces. The peak Fe concentration varied from 0.4 to 1.2 at.% and appeared at the position where Zr concentration was approximately equal to Nb concentration. The selective segregation of Fe should be affected by the heat treatment and structure defects induced by cold rolling.展开更多
基金the financial support provided by ANR(Project ANR-22-PEHY-0007)DGA(French Direction Générale des Armées,2018600045)Région Nouvelle Aquitaine(agreement 2018–1R10126).
文摘The long-period-stacking-ordered(LPSO)structure affects the mechanical,corrosion and hydrolysis properties of Mg alloys.The current work employs high angle annular dark field-scanning transmission electron microscopy(HAADF-STEM)and atom probe tomography(APT)to investigate the structural and local chemical information of LPSO phases formed in Mg-Ni-Y/Sm ternary alloys after extended isothermal annealing.Depending on the alloying elements and their concentrations,Mg-Ni-Y/Sm develops a two-phase LPSO+α-Mg structure in which the LPSO phase contains defects,hybrid LPSO structure,and Mg insertions.HAADF-STEM and APT indicate non-stoichiometric LPSO with incomplete Ni_(6)(Y/Sm)_(8) clusters.In addition,the APT quantitatively determines the local composition of LPSO and confirms the presence of Ni within the Mg bonding layers.These results provide insight into a better understanding of the structure and hydrolysis properties of LPSO-Mg alloys.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFB0701503)。
文摘The phase partition and site preference of Re atoms in a ternary Ni-Al-Re model alloy,including the electronic structure of different Re configurations,are investigated with first-principles calculations and atom probe tomography.The Re distribution of single,nearest neighbor(NN),next-nearest neighbor(NNN),and cluster configurations are respectively designed in the models withγandγphases.The results show that the Re atoms tend to enteringγphase and the Re atoms prefer to occupy the Al sites inγphase.The Re cluster with a combination of NN and NNN Re-Re pair configuration is not preferred than the isolated Re atom in the Ni-based superalloys,and the configuration with isolated Re atom is more preferred in the system.Especially,the electronic states are analyzed and the energetic parameters are calculated.The electronic structure analyses show there exists strong Ni-Re electronic interaction and it is mainly contributed by the d-d hybridization.The characteristic features of the electronic states of the Re doping effects are also given.It is also found that Re atoms prefer the Al sites inγside at the interface.The density of states at or near the Fermi level and the d-d hybridizations of NN Ni-Re are found to be important in the systems.
文摘Aluminum-based alloys play a key role in modern engineering and are widely used in construction components in aircraft, automobiles and other means of transportation due to their light weight and superior mechanical properties. Introduction of different nano-structure features can improve the service and the physical properties of such alloys. An improvement of an Al-based alloy has been performed based on the understanding of the relationships among compositions, processing, microstructural characteristics and properties. Knowledge of the decomposition process of the microstructure during the precipitation reaction is particularly important for future technical developments. The objective of this study is to investigate the nano-scale chemical composition in the Al-Cu, Al-Li and Al-Li-Cu alloys during the early stage of the precipitation sequence and to describe whether this compositional difference correlates with variations in the observed precipitation kinetics. Investigation of the fine scale segregation effects of dilute solutes in aluminum alloys which were experienced different heat treatments by using atom probe tomography has been achieved. The results show that an Al-1.7 at.% Cu alloy requires a long ageing time of approximately 8 h at 160°C to allow the diffusion of Cu atoms into Al matrix. For the Al-8.2 at.% Li alloy, a combination of both the natural ageing condition (48 h at room temperature) and a short artificial ageing condition (5 min at 160°C) induces increasing on the number density of the Li clusters and hence increase number of precipitated particles. Applying this combination of natural ageing and short artificial ageing conditions onto the ternary Al-4 at.% Li-1.7 at.% Cu alloy induces the formation of a Cu-rich phase. Increasing the Li content in the ternary alloy up to 8 at.% and increasing the ageing time to 30 min resulted in the precipitation processes ending with δ' particles. Thus the results contribute to the understanding of Al-alloy design.
基金a postdoctoral fellowship supported by Hatch Ltd.NSERC Discovery Grants awarded to D.E.M and K.T.Tsupported by Royal Society Research Grant RG160237 awarded to J.R.D+1 种基金a Department of Museum Volunteers Acquisitions & Research Fund awarded to K.T.Tpartly supported by a grant from the Instrumentation and Facilities Program, Division of Earth Sciences, National Science Foundation
文摘Granulitic lunar meteorites offer rare insights into the timing and nature of igneous,metamorphic and impact processes in the lunar crust.Accurately dating the different events recorded by these materials is very challenging,however,due to low trace element abundances (e.g.Sm,Nd,Lu,Hf),rare micrometerscale U-Th-bearing accessory minerals,and disturbed Ar-Ar systematics following a multi-stage history of shock and thermal metamorphism.Here we report on micro-baddeleyite grains in granulitic mafic breccia NWA 3163 for the first time and show that targeted microstructural analysis (electron backscatter diffraction) and nanoscale geochronology (atom probe tomography) can overcome these barriers to lunar chronology.A twinned (-90°/<401>) baddeleyite domain yields a 232Th/208Pb age of 4328 ± 309 Ma,which overlaps with a robust secondary ion mass spectrometry (SIMS) 207Pb/206Pb age of 4308± 18.6 Ma and is interpreted here as the crystallization age for the igneous protolith of NWA 3163.A second microstructural domain,< 2 mm in width,contains patchy overprinting baddeleyite and yields a Th-Pb age of 2175± 143 Ma,interpreted as dating the last substantial impact event to affect the sample.This finding demonstrates the potential of combining microstructural characterization with nanoscale geochronology when resolving complex P-T-t histories in planetary materials,here yielding the oldest measured crystallization age for components of lunar granulite NWA 3163 and placing further constraints on the formation and evolution of lunar crust.
基金This work was supported by the National Research Foundation of Korea(Grant number:NRF-2019K1A3A1A18116059 and NRF-2023R1A2C200529811)Austrian Science Fund(FWF)(P 32378-N37)Federal Ministry of Austria Education,Science and Research(BMBWF)(KR 06/2020).
文摘Herein,the evolution of long-period stacking ordered(LPSO)phases in the as-cast Mg-6Gd-1Zn-0.6Zr(wt.%)alloy are investigated via transmission electron microscopy(TEM)and atom probe tomography(APT).The TEM results reveal that two types of LPSO phase(a bulky interdendritic phase and a plate-like matrix LPSO phase)are formed in the as-cast sample.Most of the LPSO phases are confirmed to be of the 14H type,with a smaller proportion being of the 18R LPSO.Further,the APT results reveal that the composition of the interdendritic LPSO phase is closer to that of the ideal 14H phase compared to the matrix LPSO phase,and both the interdendritic and matrix LPSO phases exhibit a Gd/Zn ratio of 2.5,thereby indicating a deficient Zn content compared to the ideal 14H phase(i.e.,1.3).In addition,the influence of the LPSO phases on the deformation behavior is investigated at different compressive plastic strains using electron backscatter diffraction(EBSD)analysis to reveal twinning and slip behavior during deformation.The results indicate that the LPSO phase induces additional work hardening in the late stage of deformation via the suppression of{1011}compressive twinning and the activation of non-basal slip systems.
基金supported by the National Natural Science Foundation of China (No. 51171102)
文摘β-Nb is a typical second phase in Zr-Nb-based alloys used as fuel claddings in water-cooled nuclear reactors. The segregation of alloying element Fe may affect the corrosion resistance of Zr-Nb-based alloys. In this work, the Fe segregation at the interface between β-Nb phase and a-Zr matrix in Zr-2.5Nb alloy was studied using atom probe tomography and focused ion beam. The results suggested that the Fe concentration was much lower than Nb concentration in a-Zr matrix, while Fe selectively segregated at the β-Nb/a-Zr phase interface, leading to a Fe concentration peak at some interfaces. The peak Fe concentration varied from 0.4 to 1.2 at.% and appeared at the position where Zr concentration was approximately equal to Nb concentration. The selective segregation of Fe should be affected by the heat treatment and structure defects induced by cold rolling.