Atomic spin relaxation in a vapor cell, which can be characterized by the magnetic resonance linewidth(MRL),is an important parameter that eventually determines the sensitivity of an atomic magnetometer. In this paper...Atomic spin relaxation in a vapor cell, which can be characterized by the magnetic resonance linewidth(MRL),is an important parameter that eventually determines the sensitivity of an atomic magnetometer. In this paper, we have extensively studied how the pump intensity affects the spin relaxation. The experiment is performed with a cesium vapor cell, and the influence of the pump intensity on MRL is measured at room temperature at zero-field resonance. A simple model with five atomic levels of a Λ-like configuration is discussed theoretically, which can be used to represent the experimental process approximately, and the experimental results can be explained to some extent. Both the experimental and the theoretical results show a nonlinear broadening of the MRL when the pump intensity is increasing. The work helps to understand the mechanism of pump induced atomic spin relaxation in the atomic magnetometers.展开更多
We experimentally demonstrate multiple frequency conversion via atomic spin coherence of storing a light pulse in a doped solid. The essence of this multiple frequency conversion is four-wave mixing based on stored at...We experimentally demonstrate multiple frequency conversion via atomic spin coherence of storing a light pulse in a doped solid. The essence of this multiple frequency conversion is four-wave mixing based on stored atomic spin coherence. Through electromagnetically induced transparency, an input probe pulse is stored into atomic spin coherence by modulating the intensity of the control field. By using two different control fields to interact with the coherently prepared medium, the stored atomic spin coherence can be transformed into three different information channels. Multiple frequency conversion is implemented efficiently by manipulating the spectra of the control fields to scatter atomic spin coherence. This multiple frequency conversion is expected to have potential applications in information processing and communication network.展开更多
This paper investigates the atomic spin polarization controllability of spin-exchange relaxation-free co-magnetometers(SERFCMs).This is the first work in the field of controllability analysis for the atomic spin ensem...This paper investigates the atomic spin polarization controllability of spin-exchange relaxation-free co-magnetometers(SERFCMs).This is the first work in the field of controllability analysis for the atomic spin ensembles systems,whose dynamic behaviors of spin polarization are described by the Bloch equations.Based on the Bloch equations,a state-space model of the atomic spin polarization for SERFCM is first established,which belongs to a particular class of nonlinear systems.For this class of nonlinear systems,a novel determination method for the global state controllability is proposed and proved.Then,this method is implemented in the process of controllability analysis on the atomic spin polarization of an actual SERFCM.Moreover,a theoretically feasible and reasonable solution of the control input is proposed under some physical constraints,with whose limitation of realistic conditions,the controller design can be accomplished more practically and more exactly.Finally,the simulation results demonstrate the feasibility and validation of the proposed controllability determination method.展开更多
Taking into account the dephasing process in the realistic atomic ensemble,we theoretically study the generation of atomic spin squeezing via atomic coherence induced by the coupling and probe fields.Using the Heisenb...Taking into account the dephasing process in the realistic atomic ensemble,we theoretically study the generation of atomic spin squeezing via atomic coherence induced by the coupling and probe fields.Using the Heisenberg–Langevin approach,we find that the perfect spin squeezing in the X component can be obtained while the coupling and probe fields produce the maximum coherence between the ground state sublevels 1 and 2.Moreover,the degree of atomic spin squeezing in the X component can be strengthened with the increasing atomic density and/or Rabi frequency of the mixing field.The theoretical results provide a proof-of-principle demonstration of generating the atomic spin squeezing via quantum coherence in the realistic atomic ensemble which may find potential applications in quantum information processing and quantum networks.展开更多
The evolution of two-component cold atoms on a ring with spin-orbit coupling has been studied analytically for the case with N noninteracting particles. Then, the effect of interaction is evaluated numerically via a t...The evolution of two-component cold atoms on a ring with spin-orbit coupling has been studied analytically for the case with N noninteracting particles. Then, the effect of interaction is evaluated numerically via a two-body system. Two cases are considered: (i) Starting from a ground state the evolution is induced by a sudden change of the laser field, and (ii) the evolution starting from a superposition state. Oscillating persistent spin-currents have been found. A set of formulae have been derived to describe the period and amplitude of the oscillation. Based on these formulae the oscillation can be well controlled via adjusting the parameters of the laser beams. In particular, it is predicted that movable stripes might emerge on the ring.展开更多
Electrodynamics of the one-electron currents due to the circular orbital motion of the electron particle in the hydrogen atom has been examined. The motion is assumed to be induced by the time change of the magnetic f...Electrodynamics of the one-electron currents due to the circular orbital motion of the electron particle in the hydrogen atom has been examined. The motion is assumed to be induced by the time change of the magnetic field in the atom. A characteristic point is that the electric resistance calculated for the motion is independent of the orbit index and its size is similar to that obtained earlier experimentally for the planar free-electron-like structures considered in the integer quantum Hall effect. Other current parameters like conductivity and the relaxation time behave in a way similar to that being typical for metals. A special attention was attached to the relations between the current intensity and magnetic field. A correct reproduction of this field with the aid of the Biot-Savart law became possible when the geometrical microstructure of the electron particle has been explicitly taken into account. But the same microstructure properties do influence also the current velocity. In fact the current suitable for the Biot-Savart law should have a speed characteristic for a spinning electron particle and not that of a spinless electron circulating along the orbit of the original Bohr model.展开更多
Method is developed for self-consistent calculation of the energy spectrum of free energy and electrical disordered crystals. Processes of electron scattering on the ionic core potential of different sort, fluctuation...Method is developed for self-consistent calculation of the energy spectrum of free energy and electrical disordered crystals. Processes of electron scattering on the ionic core potential of different sort, fluctuations of charge, spin density and lattice vibrations are taken into account. Electronic states of the system are described using tight binding multiband model. The nature of the spin-dependent electron transport of carbon nanotubes with chromium atoms adsorbed on the surface is explained. The value of the spin polarization of electron transport is determined by the difference of the partial densities of states of electrons with opposite spin projection at the Fermi level and the difference between the relaxation times of electron states. The value of the spin polarization of the electric current increases with increasing of Cr atoms concentration and magnitude of the external magnetic field.展开更多
Over the past few decades, spin detection and manipulation at the atomic scale using scanning tunneling microcopy has matured, which has opened the possibility of realizing spin-based functional devices with single at...Over the past few decades, spin detection and manipulation at the atomic scale using scanning tunneling microcopy has matured, which has opened the possibility of realizing spin-based functional devices with single atoms and molecules.This article reviews the principle of spin polarized scanning tunneling microscopy and inelastic tunneling spectroscopy,which are used to measure the static spin structure and dynamic spin excitation, respectively. Recent progress will be presented, including complex spin structure, magnetization of single atoms and molecules, as well as spin excitation of single atoms, clusters, and molecules. Finally, progress in the use of spin polarized tunneling current to manipulate an atomic magnet is discussed.展开更多
Superexchange and inter-orbital spin-exchange interactions are key ingredients for understanding(orbital) quantum magnetism in strongly correlated systems and have been realized in ultracold atomic gases.Here we stu...Superexchange and inter-orbital spin-exchange interactions are key ingredients for understanding(orbital) quantum magnetism in strongly correlated systems and have been realized in ultracold atomic gases.Here we study the spin dynamics of ultracold alkaline-earth atoms in an optical lattice when the two exchange interactions coexist.In the superexchange interaction dominating regime,we find that the time-resolved spin imbalance shows a remarkable modulated oscillation,which can be attributed to the interplay between local and nonlocal quantum mechanical exchange mechanisms.Moreover,the filling of the long-lived excited atoms affects the collapse and revival of the magnetization dynamics.These observations can be realized in state-dependent optical lattices combined with the state-of-the-art advances in optical lattice clock spectroscopy.展开更多
The laser-pumped potassium spin-exchange relaxation free (SERF) magnetometer is the most sensitive detector of magnetic field and has many important applications. We present the experimental results of our potassium...The laser-pumped potassium spin-exchange relaxation free (SERF) magnetometer is the most sensitive detector of magnetic field and has many important applications. We present the experimental results of our potassium SERF magne- tometer. A pump-probe approach is used to identify the unique spin dynamics of the atomic ensemble in the SERF regime. A single channel sensitivity of 8 f.THz-1/2 is achieved with our SERF magnetometer.展开更多
Proceeding from the double-cone model of Helium, based on Bohr’s theorem and recently published in?[13], a spherical modification could be made by introducing a second electron rotation which exhibits a rotation axis...Proceeding from the double-cone model of Helium, based on Bohr’s theorem and recently published in?[13], a spherical modification could be made by introducing a second electron rotation which exhibits a rotation axis perpendicular to the first one. Thereby, each rotation is induced by the spin of one electron. Thus the trajectory of each electron represents the superposition of two separate orbits, while each electron is always positioned opposite to the other one. Both electron velocities are equal and constant, due to their mutual coupling. The 3D electron orbits could be 2D-graphed by separately projecting them on the x/z-plane of a Cartesian coordinate system, and by plotting the evaluated x-, y- and z-values versus the rotation angle. Due to the decreased electron velocity, the resulting radius is twice the size of the one in the double-cone model. Even if distinct evidence is not feasible, e.g. by means of X-ray crystallographic data, this modified model appears to be the more plausible one, due to its higher cloud coverage, and since it comes closer to Kimball’s charge cloud model.展开更多
Motivated by the fascinating progresses in the cold atom experiments and theories,especially the artificial gauge field induced spin–orbit coupling of neutral atoms,we present a novel dispersion of neutral atoms carr...Motivated by the fascinating progresses in the cold atom experiments and theories,especially the artificial gauge field induced spin–orbit coupling of neutral atoms,we present a novel dispersion of neutral atoms carrying a non-vanishing magnetic moment in a special gauge field,an external electric field of dark-soliton shaped profile.By means of WKB approximation,we obtain discrete quantized landau-like energy levels,which is instructive for the quantum Hall effect of neutral particles.The observability of the results is also discussed.展开更多
基金supported by the National Key R&D Program of China(Grant No.2017YFA0304502)the National Natural Science Foundation of China(Grant Nos.11634008,11674203,11574187,and 61227902)
文摘Atomic spin relaxation in a vapor cell, which can be characterized by the magnetic resonance linewidth(MRL),is an important parameter that eventually determines the sensitivity of an atomic magnetometer. In this paper, we have extensively studied how the pump intensity affects the spin relaxation. The experiment is performed with a cesium vapor cell, and the influence of the pump intensity on MRL is measured at room temperature at zero-field resonance. A simple model with five atomic levels of a Λ-like configuration is discussed theoretically, which can be used to represent the experimental process approximately, and the experimental results can be explained to some extent. Both the experimental and the theoretical results show a nonlinear broadening of the MRL when the pump intensity is increasing. The work helps to understand the mechanism of pump induced atomic spin relaxation in the atomic magnetometers.
基金Project supported by the National Basic Research Program of China(Grant No.2011CB921603)the National Natural Science Foundation of China(Grant Nos.11374126,11347137,11404336,and 11204103)+1 种基金the China Postdoctoral Science Foundation(Grant No.2013T60317)the National Fund for Fostering Talents of Basic Science,China(Grant No.J1103202)
文摘We experimentally demonstrate multiple frequency conversion via atomic spin coherence of storing a light pulse in a doped solid. The essence of this multiple frequency conversion is four-wave mixing based on stored atomic spin coherence. Through electromagnetically induced transparency, an input probe pulse is stored into atomic spin coherence by modulating the intensity of the control field. By using two different control fields to interact with the coherently prepared medium, the stored atomic spin coherence can be transformed into three different information channels. Multiple frequency conversion is implemented efficiently by manipulating the spectra of the control fields to scatter atomic spin coherence. This multiple frequency conversion is expected to have potential applications in information processing and communication network.
基金supported in part by the National Natural Science Foundation of China(61673041,62003022)the Beijing Academy of Quantum Information Science Research Program(Y18G34)。
文摘This paper investigates the atomic spin polarization controllability of spin-exchange relaxation-free co-magnetometers(SERFCMs).This is the first work in the field of controllability analysis for the atomic spin ensembles systems,whose dynamic behaviors of spin polarization are described by the Bloch equations.Based on the Bloch equations,a state-space model of the atomic spin polarization for SERFCM is first established,which belongs to a particular class of nonlinear systems.For this class of nonlinear systems,a novel determination method for the global state controllability is proposed and proved.Then,this method is implemented in the process of controllability analysis on the atomic spin polarization of an actual SERFCM.Moreover,a theoretically feasible and reasonable solution of the control input is proposed under some physical constraints,with whose limitation of realistic conditions,the controller design can be accomplished more practically and more exactly.Finally,the simulation results demonstrate the feasibility and validation of the proposed controllability determination method.
文摘Taking into account the dephasing process in the realistic atomic ensemble,we theoretically study the generation of atomic spin squeezing via atomic coherence induced by the coupling and probe fields.Using the Heisenberg–Langevin approach,we find that the perfect spin squeezing in the X component can be obtained while the coupling and probe fields produce the maximum coherence between the ground state sublevels 1 and 2.Moreover,the degree of atomic spin squeezing in the X component can be strengthened with the increasing atomic density and/or Rabi frequency of the mixing field.The theoretical results provide a proof-of-principle demonstration of generating the atomic spin squeezing via quantum coherence in the realistic atomic ensemble which may find potential applications in quantum information processing and quantum networks.
基金Project supported by the National Natural Science Foundation of China(Grant No.10874249)
文摘The evolution of two-component cold atoms on a ring with spin-orbit coupling has been studied analytically for the case with N noninteracting particles. Then, the effect of interaction is evaluated numerically via a two-body system. Two cases are considered: (i) Starting from a ground state the evolution is induced by a sudden change of the laser field, and (ii) the evolution starting from a superposition state. Oscillating persistent spin-currents have been found. A set of formulae have been derived to describe the period and amplitude of the oscillation. Based on these formulae the oscillation can be well controlled via adjusting the parameters of the laser beams. In particular, it is predicted that movable stripes might emerge on the ring.
文摘Electrodynamics of the one-electron currents due to the circular orbital motion of the electron particle in the hydrogen atom has been examined. The motion is assumed to be induced by the time change of the magnetic field in the atom. A characteristic point is that the electric resistance calculated for the motion is independent of the orbit index and its size is similar to that obtained earlier experimentally for the planar free-electron-like structures considered in the integer quantum Hall effect. Other current parameters like conductivity and the relaxation time behave in a way similar to that being typical for metals. A special attention was attached to the relations between the current intensity and magnetic field. A correct reproduction of this field with the aid of the Biot-Savart law became possible when the geometrical microstructure of the electron particle has been explicitly taken into account. But the same microstructure properties do influence also the current velocity. In fact the current suitable for the Biot-Savart law should have a speed characteristic for a spinning electron particle and not that of a spinless electron circulating along the orbit of the original Bohr model.
文摘Method is developed for self-consistent calculation of the energy spectrum of free energy and electrical disordered crystals. Processes of electron scattering on the ionic core potential of different sort, fluctuations of charge, spin density and lattice vibrations are taken into account. Electronic states of the system are described using tight binding multiband model. The nature of the spin-dependent electron transport of carbon nanotubes with chromium atoms adsorbed on the surface is explained. The value of the spin polarization of electron transport is determined by the difference of the partial densities of states of electrons with opposite spin projection at the Fermi level and the difference between the relaxation times of electron states. The value of the spin polarization of the electric current increases with increasing of Cr atoms concentration and magnitude of the external magnetic field.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11427902 and 11674063)the National Key Research and Development Program of China(Grant No.2016YFA0300904)
文摘Over the past few decades, spin detection and manipulation at the atomic scale using scanning tunneling microcopy has matured, which has opened the possibility of realizing spin-based functional devices with single atoms and molecules.This article reviews the principle of spin polarized scanning tunneling microscopy and inelastic tunneling spectroscopy,which are used to measure the static spin structure and dynamic spin excitation, respectively. Recent progress will be presented, including complex spin structure, magnetization of single atoms and molecules, as well as spin excitation of single atoms, clusters, and molecules. Finally, progress in the use of spin polarized tunneling current to manipulate an atomic magnet is discussed.
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFA0301504)
文摘Superexchange and inter-orbital spin-exchange interactions are key ingredients for understanding(orbital) quantum magnetism in strongly correlated systems and have been realized in ultracold atomic gases.Here we study the spin dynamics of ultracold alkaline-earth atoms in an optical lattice when the two exchange interactions coexist.In the superexchange interaction dominating regime,we find that the time-resolved spin imbalance shows a remarkable modulated oscillation,which can be attributed to the interplay between local and nonlocal quantum mechanical exchange mechanisms.Moreover,the filling of the long-lived excited atoms affects the collapse and revival of the magnetization dynamics.These observations can be realized in state-dependent optical lattices combined with the state-of-the-art advances in optical lattice clock spectroscopy.
基金supported by the National Natural Science Foundation of China(Grant No.61227902)
文摘The laser-pumped potassium spin-exchange relaxation free (SERF) magnetometer is the most sensitive detector of magnetic field and has many important applications. We present the experimental results of our potassium SERF magne- tometer. A pump-probe approach is used to identify the unique spin dynamics of the atomic ensemble in the SERF regime. A single channel sensitivity of 8 f.THz-1/2 is achieved with our SERF magnetometer.
文摘Proceeding from the double-cone model of Helium, based on Bohr’s theorem and recently published in?[13], a spherical modification could be made by introducing a second electron rotation which exhibits a rotation axis perpendicular to the first one. Thereby, each rotation is induced by the spin of one electron. Thus the trajectory of each electron represents the superposition of two separate orbits, while each electron is always positioned opposite to the other one. Both electron velocities are equal and constant, due to their mutual coupling. The 3D electron orbits could be 2D-graphed by separately projecting them on the x/z-plane of a Cartesian coordinate system, and by plotting the evaluated x-, y- and z-values versus the rotation angle. Due to the decreased electron velocity, the resulting radius is twice the size of the one in the double-cone model. Even if distinct evidence is not feasible, e.g. by means of X-ray crystallographic data, this modified model appears to be the more plausible one, due to its higher cloud coverage, and since it comes closer to Kimball’s charge cloud model.
基金Project supported by China Scholarship Council,Shanxi Province Natural Science Foundation,China(Grant No.201601D011009)the Enterprise Project(Grant No.01110116100051)+1 种基金Shanxi 1331KSC and 111 Project(Grant No.D18001)the National Natural Science Foundation of China(Grant Nos.11404415 and 61873154)
文摘Motivated by the fascinating progresses in the cold atom experiments and theories,especially the artificial gauge field induced spin–orbit coupling of neutral atoms,we present a novel dispersion of neutral atoms carrying a non-vanishing magnetic moment in a special gauge field,an external electric field of dark-soliton shaped profile.By means of WKB approximation,we obtain discrete quantized landau-like energy levels,which is instructive for the quantum Hall effect of neutral particles.The observability of the results is also discussed.