期刊文献+
共找到41,795篇文章
< 1 2 250 >
每页显示 20 50 100
Strong synergy between physical and chemical properties:Insight into optimization of atomically dispersed oxygen reduction catalysts 被引量:4
1
作者 Yifan Zhang Linsheng Liu +4 位作者 Yuxuan Li Xueqin Mu Shichun Mu Suli Liu Zhihui Dai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期36-49,共14页
Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utiliz... Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utilization and exceptional catalytic functionality.Furthermore,accurately controlling atomic physical properties including spin,charge,orbital,and lattice degrees of atomically dispersed catalysts can realize the optimized chemical properties including maximum atom utilization efficiency,homogenous active centers,and satisfactory catalytic performance,but remains elusive.Here,through physical and chemical insight,we review and systematically summarize the strategies to optimize atomically dispersed ORR catalysts including adjusting the atomic coordination environment,adjacent electronic orbital and site density,and the choice of dual-atom sites.Then the emphasis is on the fundamental understanding of the correlation between the physical property and the catalytic behavior for atomically dispersed catalysts.Finally,an overview of the existing challenges and prospects to illustrate the current obstacles and potential opportunities for the advancement of atomically dispersed catalysts in the realm of electrocatalytic reactions is offered. 展开更多
关键词 atomically dispersed catalysts Coordination environment Electronic orbitals Inter-site distance effect Oxygen reduction reaction
下载PDF
Metal-organic framework-based single-atom electro-/ photocatalysts: Synthesis, energy applications, and opportunities 被引量:2
2
作者 Munir Ahmad Jiahui Chen +10 位作者 Jianwen Liu Yan Zhang Zhongxin Song Shahzad Afzal Waseem Raza Liaqat Zeb Andleeb Mehmood Arshad Hussain Jiujun Zhang Xian-Zhu Fu Jing-Li Luo 《Carbon Energy》 SCIE EI CAS CSCD 2024年第1期1-43,共43页
Single-atom catalysts(SACs)have gained substantial attention because of their exceptional catalytic properties.However,the high surface energy limits their synthesis,thus creating significant challenges for further de... Single-atom catalysts(SACs)have gained substantial attention because of their exceptional catalytic properties.However,the high surface energy limits their synthesis,thus creating significant challenges for further development.In the last few years,metal–organic frameworks(MOFs)have received significant consideration as ideal candidates for synthesizing SACs due to their tailorable chemistry,tunable morphologies,high porosity,and chemical/thermal stability.From this perspective,this review thoroughly summarizes the previously reported methods and possible future approaches for constructing MOF-based(MOF-derived-supported and MOF-supported)SACs.Then,MOF-based SAC's identification techniques are briefly assessed to understand their coordination environments,local electronic structures,spatial distributions,and catalytic/electrochemical reaction mechanisms.This review systematically highlights several photocatalytic and electrocatalytic applications of MOF-based SACs for energy conversion and storage,including hydrogen evolution reactions,oxygen evolution reactions,O_(2)/CO_(2)/N_(2) reduction reactions,fuel cells,and rechargeable batteries.Some light is also shed on the future development of this highly exciting field by highlighting the advantages and limitations of MOF-based SACs. 展开更多
关键词 carbon energy generation MOF-derived-supported MOF-supported single atoms
下载PDF
Single-atom Pt on carbon nanotubes for selective electrocatalysis 被引量:2
3
作者 Samuel S.Hardisty Xiaoqian Lin +1 位作者 Anthony R.J.Kucernak David Zitoun 《Carbon Energy》 SCIE EI CAS CSCD 2024年第1期63-71,共9页
Utilizing supported single atoms as catalysts presents an opportunity to reduce the usage of critical raw materials such as platinum,which are essential for electrochemical reactions such as hydrogen oxidation reactio... Utilizing supported single atoms as catalysts presents an opportunity to reduce the usage of critical raw materials such as platinum,which are essential for electrochemical reactions such as hydrogen oxidation reaction(HOR).Herein,we describe the synthesis of a Pt single electrocatalyst inside single-walled carbon nanotubes(SWCNTs)via a redox reaction.Characterizations via electron microscopy,X-ray photoelectron microscopy,and X-ray absorption spectroscopy show the single-atom nature of the Pt.The electrochemical behavior of the sample to hydrogen and oxygen was investigated using the advanced floating electrode technique,which minimizes mass transport limitations and gives a thorough insight into the activity of the electrocatalyst.The single-atom samples showed higher HOR activity than state-of-the-art 30%Pt/C while almost no oxygen reduction reaction activity in the proton exchange membrane fuel cell operating range.The selective activity toward HOR arose as the main fingerprint of the catalyst confinement in the SWCNTs. 展开更多
关键词 CONFINEMENT ELECTROCATALYSIS hydrogen PLATINUM single atom catalysts
下载PDF
Atom substitution of the solid-state electrolyte Li_(10)GeP_(2)S_(12)for stabilized all-solid-state lithium metal batteries 被引量:1
4
作者 Zijing Wan Xiaozhen Chen +3 位作者 Ziqi Zhou Xiaoliang Zhong Xiaobing Luo Dongwei Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期28-38,I0002,共12页
Solid-state electrolyte Li_(10)GeP_(2)S_(12)(LGPS)has a high lithium ion conductivity of 12 mS cm^(-1)at room temperature,but its inferior chemical stability against lithium metal anode impedes its practical applicati... Solid-state electrolyte Li_(10)GeP_(2)S_(12)(LGPS)has a high lithium ion conductivity of 12 mS cm^(-1)at room temperature,but its inferior chemical stability against lithium metal anode impedes its practical application.Among all solutions,Ge atom substitution of the solid-state electrolyte LGPS stands out as the most promising solution to this interface problem.A systematic screening framework for Ge atom substitution including ionic conductivity,thermodynamic stability,electronic and mechanical properties is utilized to solve it.For fast screening,an enhanced model Dop Net FC using chemical formulas for the dataset is adopted to predict ionic conductivity.Finally,Li_(10)SrP_(2)S_(12)(LSrPS)is screened out,which has high lithium ion conductivity(12.58 mS cm^(-1)).In addition,an enhanced migration of lithium ion across the LSr PS/Li interface is found.Meanwhile,compared to the LGPS/Li interface,LSrPS/Li interface exhibits a larger Schottky barrier(0.134 eV),smaller electron transfer region(3.103?),and enhanced ability to block additional electrons,all of which contribute to the stabilized interface.The applied theoretical atom substitution screening framework with the aid of machine learning can be extended to rapid determination of modified specific material schemes. 展开更多
关键词 atom substitution Solid-state electrolyte Machine learning Stabilized interface
下载PDF
Synthesis and Modulation of Low-Dimensional Transition Metal Chalcogenide Materials via Atomic Substitution 被引量:1
5
作者 Xuan Wang Akang Chen +3 位作者 XinLei Wu Jiatao Zhang Jichen Dong Leining Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期49-94,共46页
In recent years,low-dimensional transition metal chalcogenide(TMC)materials have garnered growing research attention due to their superior electronic,optical,and catalytic properties compared to their bulk counterpart... In recent years,low-dimensional transition metal chalcogenide(TMC)materials have garnered growing research attention due to their superior electronic,optical,and catalytic properties compared to their bulk counterparts.The controllable synthesis and manipulation of these materials are crucial for tailoring their properties and unlocking their full potential in various applications.In this context,the atomic substitution method has emerged as a favorable approach.It involves the replacement of specific atoms within TMC structures with other elements and possesses the capability to regulate the compositions finely,crystal structures,and inherent properties of the resulting materials.In this review,we present a comprehensive overview on various strategies of atomic substitution employed in the synthesis of zero-dimensional,one-dimensional and two-dimensional TMC materials.The effects of substituting elements,substitution ratios,and substitution positions on the structures and morphologies of resulting material are discussed.The enhanced electrocatalytic performance and photovoltaic properties of the obtained materials are also provided,emphasizing the role of atomic substitution in achieving these advancements.Finally,challenges and future prospects in the field of atomic substitution for fabricating low-dimensional TMC materials are summarized. 展开更多
关键词 Transition metal chalcogenides atomic substitution Ion exchange Low-dimensional materials Controllable synthesis
下载PDF
A frequency servo SoC with output power stabilization loop technology for miniaturized atomic clocks 被引量:1
6
作者 Hongyang Zhang Xinlin Geng +3 位作者 Zonglin Ye Kailei Wang Qian Xie Zheng Wang 《Journal of Semiconductors》 EI CAS CSCD 2024年第6期13-22,共10页
A frequency servo system-on-chip(FS-SoC)featuring output power stabilization technology is introduced in this study for high-precision and miniaturized cesium(Cs)atomic clocks.The proposed power stabilization loop(PSL... A frequency servo system-on-chip(FS-SoC)featuring output power stabilization technology is introduced in this study for high-precision and miniaturized cesium(Cs)atomic clocks.The proposed power stabilization loop(PSL)technique,incorporating an off-chip power detector(PD),ensures that the output power of the FS-SoC remains stable,mitigating the impact of power fluctuations on the atomic clock's stability.Additionally,a one-pulse-per-second(1PPS)is employed to syn-chronize the clock with GPS.Fabricated using 65 nm CMOS technology,the measured phase noise of the FS-SoC stands at-69.5 dBc/Hz@100 Hz offset and-83.9 dBc/Hz@1 kHz offset,accompanied by a power dissipation of 19.7 mW.The Cs atomic clock employing the proposed FS-SoC and PSL obtains an Allan deviation of 1.7×10^(-11) with 1-s averaging time. 展开更多
关键词 CMOS technology atomic clock phase-locked loop output power stabilization 1PPS
下载PDF
Optimizing high-coordination shell of Co-based single-atom catalysts for efficient ORR and zinc-air batteries 被引量:1
7
作者 Yugang Qi Qing Liang +9 位作者 Kexin Song Xinyan Zhou Meiqi Liu Wenwen Li Fuxi Liu Zhou Jiang Xu Zou Zhongjun Chen Wei Zhang Weitao Zheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期306-314,I0007,共10页
Atom-level modulation of the coordination environment for single-atom catalysts(SACs)is considered as an effective strategy for elevating the catalytic performance.For the MNxsite,breaking the symmetrical geometry and... Atom-level modulation of the coordination environment for single-atom catalysts(SACs)is considered as an effective strategy for elevating the catalytic performance.For the MNxsite,breaking the symmetrical geometry and charge distribution by introducing relatively weak electronegative atoms into the first/second shell is an efficient way,but it remains challenging for elucidating the underlying mechanism of interaction.Herein,a practical strategy was reported to rationally design single cobalt atoms coordinated with both phosphorus and nitrogen atoms in a hierarchically porous carbon derived from metal-organic frameworks.X-ray absorption spectrum reveals that atomically dispersed Co sites are coordinated with four N atoms in the first shell and varying numbers of P atoms in the second shell(denoted as Co-N/P-C).The prepared catalyst exhibits excellent oxygen reduction reaction(ORR)activity as well as zinc-air battery performance.The introduction of P atoms in the Co-SACs weakens the interaction between Co and N,significantly promoting the adsorption process of ^(*)OOH,resulting in the acceleration of reaction kinetics and reduction of thermodynamic barrier,responsible for the increased intrinsic activity.Our discovery provides insights into an ultimate design of single-atom catalysts with adjustable electrocatalytic activities for efficient electrochemical energy conversion. 展开更多
关键词 ELECTROCATALYTIC Oxygen reduction reaction Single atom catalyst Shell coordination optimization
下载PDF
Building Feedback-Regulation System Through Atomic Design for Highly Active SO_(2)Sensing 被引量:1
8
作者 Xin Jia Panzhe Qiao +8 位作者 Xiaowu Wang Muyu Yan Yang Chen Bao-Li An Pengfei Hu Bo Lu Jing Xu Zhenggang Xue Jiaqiang Xu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第7期343-357,共15页
Reasonably constructing an atomic interface is pronouncedly essential for surface-related gas-sensing reaction.Herein,we present an ingen-ious feedback-regulation system by changing the interactional mode between sing... Reasonably constructing an atomic interface is pronouncedly essential for surface-related gas-sensing reaction.Herein,we present an ingen-ious feedback-regulation system by changing the interactional mode between single Pt atoms and adjacent S species for high-efficiency SO_(2)sensing.We found that the single Pt sites on the MoS_(2)surface can induce easier volatiliza-tion of adjacent S species to activate the whole inert S plane.Reversely,the activated S species can provide a feedback role in tailoring the antibonding-orbital electronic occupancy state of Pt atoms,thus creating a combined system involving S vacancy-assisted single Pt sites(Pt-Vs)to synergistically improve the adsorption ability of SO_(2)gas molecules.Further-more,in situ Raman,ex situ X-ray photoelectron spectroscopy testing and density functional theory analysis demonstrate the intact feedback-regulation system can expand the electron transfer path from single Pt sites to whole Pt-MoS_(2)supports in SO_(2)gas atmosphere.Equipped with wireless-sensing modules,the final Pt1-MoS_(2)-def sensors array can further realize real-time monitoring of SO_(2)levels and cloud-data storage for plant growth.Such a fundamental understanding of the intrinsic link between atomic interface and sensing mechanism is thus expected to broaden the rational design of highly effective gas sensors. 展开更多
关键词 Feedback-regulation system atomic interface SO_(2)sensor Single-atom sensing mechanism Intelligent-sensing array
下载PDF
Atomically dispersed Ni electrocatalyst for superior urea-assisted water splitting 被引量:1
9
作者 Fang Luo Shuyuan Pan +3 位作者 Yuhua Xie Chen Li Yingjie Yu Zehui Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期1-6,I0002,共7页
Urea oxidation reaction(UOR) has been selected as substitution for oxygen evolution reaction ascribing to its low thermodynamic voltage as well as utilization of nickel as electrocatalyst.Herein,we report the formatio... Urea oxidation reaction(UOR) has been selected as substitution for oxygen evolution reaction ascribing to its low thermodynamic voltage as well as utilization of nickel as electrocatalyst.Herein,we report the formation of nickel single atoms(Ni-SAs) as exceptional bifunctional electrocatalyst toward UOR and hydrogen evolution reaction(HER) in urea-assisted water splitting.In UOR catalysis,Ni-SAs perform a superior catalytic performance than Ni-NP/NC and Pt/C ascribing to the formation of HOO-Ni-N_(4) structure evidenced by in-situ Raman spectroscopy,corresponding to a boosted mass activity by 175-fold at 1.4 V vs.RHE than Ni-NP/NC.Furthermore,Ni-SAs requires only 450 mV overpotential to obtain HER current density of 500 mA cm^(-2).136 mA cm^(-2) is achieved in urea-assisted water splitting at1.7 V for Ni-SAs,boosted by 5.7 times than Pt/C-IrO_(2) driven water splitting. 展开更多
关键词 Urea oxidation reaction Hydrogen evolution reaction Nickel single atoms Water splitting
下载PDF
Precise construction of RuPt dual single-atomic sites to optimize oxygen electrocatalytic behaviors for high-performance Zn-air batteries
10
作者 Xiaolin Hu Zhenkun Wu Chaohe Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期520-528,I0011,共10页
The development of redox bifunctional electrocatalysts with high performance,low cost,and long lifetimes is essential for achieving clean energy goals.This study proposed an atom capture strategy for anchoring dual si... The development of redox bifunctional electrocatalysts with high performance,low cost,and long lifetimes is essential for achieving clean energy goals.This study proposed an atom capture strategy for anchoring dual single atoms(DSAs)in a zinc-zeolitic imidazolate framework(Zn-ZIF),followed by calcination under an N_(2) atmosphere to synthesize ruthenium-platinum DSAs supported on a nitrogendoped carbon substrate(RuPt DSAs-NC).Theoretical calculations showed that the degree of Ru 5dxz-~*O 2p_x orbital hybridization was high when^(*)O was adsorbed at the Ru site,indicating enhanced covalent hybridization of metal sites and oxygen ligands,which benefited the adsorption of intermediate species.The presence of the RuPtN_6 active center optimized the absorption-desorption behavior of intermediates,improving the electrocatalytic performance of the oxygen reduction reaction(ORR)and the oxygen evolution reaction(DER),RuPt DSAs-NC exhibited a 0.87 V high half-wave potential and a 268 mV low overpotential at 10 mA cm^(-2)in an alkaline environment.Furthermore,rechargeable zinc-air batteries(ZABs)achieved a peak power density of 171 MW cm^(-2).The RuPt DSAs-NC demonstrated long-term cycling for up to 500 h with superior round-trip efficiency.This study provided an effective structural design strategy to construct DSAs active sites for enhanced electrocata lytic performance. 展开更多
关键词 Dual single atoms catalysts atom capture Oxygen reduction reaction Oxygen evolution reaction Rechargeable Zn-air batteries
下载PDF
A simple atomization approach enables monolayer dispersion of nano graphenes in cementitious composites with excellent strength gains
11
作者 Nanxi Dang Rijiao Yang +4 位作者 Chengji Xu Yu Peng Qiang Zeng Weijian Zhao Zhidong Zhang 《Nano Materials Science》 EI CAS CSCD 2024年第2期211-222,共12页
Carbon nano additives(CNAs)are critical to achieving the unique properties of functionalized composites,however,controlling the dispersion of CNAs in material matrix is always a challenging task.In this study,a simple... Carbon nano additives(CNAs)are critical to achieving the unique properties of functionalized composites,however,controlling the dispersion of CNAs in material matrix is always a challenging task.In this study,a simple atomization approach was successfully developed to promote the dispersion efficiency of graphene nanoplatelets(GNPs)in cement composites.This atomization approach can be integrated with the direct,indirect and combined ultrasonic stirrings in a homemade automatic stirring-atomization device.Mechanical and microstructure tests were performed on hardened cement pastes blended with GNPs in different stirring and mixing approaches.Results show that the direct ultrasonic stirrings enabled more homogeneous dispersions of GNP particles with a smaller size for a longer duration.The atomized droplets with the mean size of~100μm largely mitigated GNPs’agglomerations.Monolayer GNPs were observed in the cement matrix with the strength gain by up to 54%,and the total porosity decrease by 21%in 0.3 wt%GNPs dosage.The greatly enhanced dispersion efficiency of GNPs in cement also raised the cement hydration.This work provides an effective and manpower saving technique toward dispersing CNAs in engineering materials with great industrialization prospects. 展开更多
关键词 NANOMATERIALS DISPERSION atomIZATION STRENGTH Microstructure
下载PDF
Atomic layer deposition in advanced display technologies:from photoluminescence to encapsulation
12
作者 Rong Chen Kun Cao +4 位作者 Yanwei Wen Fan Yang Jian Wang Xiao Liu Bin Shan 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第2期65-82,共18页
Driven by the growing demand for next-generation displays,the development of advanced luminescent materials with exceptional photoelectric properties is rapidly accelerating,with such materials including quantum dots ... Driven by the growing demand for next-generation displays,the development of advanced luminescent materials with exceptional photoelectric properties is rapidly accelerating,with such materials including quantum dots and phosphors,etc.Nevertheless,the primary challenge preventing the practical application of these luminescent materials lies in meeting the required durability standards.Atomic layer deposition(ALD)has,therefore,been employed to stabilize luminescent materials,and as a result,flexible display devices have been fabricated through material modification,surface and interface engineering,encapsulation,cross-scale manufacturing,and simulations.In addition,the appropriate equipment has been developed for both spatial ALD and fluidized ALD to satisfy the low-cost,high-efficiency,and high-reliability manufacturing requirements.This strategic approach establishes the groundwork for the development of ultra-stable luminescent materials,highly efficient light-emitting diodes(LEDs),and thin-film packaging.Ultimately,this significantly enhances their potential applicability in LED illumination and backlighted displays,marking a notable advancement in the display industry. 展开更多
关键词 atomic layer deposition DISPLAY LUMINESCENT ENCAPSULATION
下载PDF
Advances of Synergistic Electrocatalysis Between Single Atoms and Nanoparticles/Clusters
13
作者 Guanyu Luo Min Song +6 位作者 Qian Zhang Lulu An Tao Shen Shuang Wang Hanyu Hu Xiao Huang Deli Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期377-412,共36页
Combining single atoms with clusters or nanoparticles is an emerging tactic to design efficient electrocatalysts.Both synergy effect and high atomic utilization of active sites in the composite catalysts result in enh... Combining single atoms with clusters or nanoparticles is an emerging tactic to design efficient electrocatalysts.Both synergy effect and high atomic utilization of active sites in the composite catalysts result in enhanced electrocatalytic performance,simultaneously provide a radical analysis of the interrelationship between structure and activity.In this review,the recent advances of single-atomic site catalysts coupled with clusters or nanoparticles are emphasized.Firstly,the synthetic strategies,characterization,dynamics and types of single atoms coupled with clusters/nanoparticles are introduced,and then the key factors controlling the structure of the composite catalysts are discussed.Next,several clean energy catalytic reactions performed over the synergistic composite catalysts are illustrated.Eventually,the encountering challenges and recommendations for the future advancement of synergistic structure in energy-transformation electrocatalysis are outlined. 展开更多
关键词 Single atoms NANOPARTICLES CLUSTERS Synergistic composite catalysts Synergistic effect
下载PDF
Tailoring local structures of atomically dispersed copper sites for highly selective CO_(2) electroreduction
14
作者 Kyung‐Jong Noh Byoung Joon Park +5 位作者 Ying Wang Yejung Choi Sang‐Hoon You Yong‐Tae Kim Kug‐Seung Lee Jeong Woo Han 《Carbon Energy》 SCIE EI CAS CSCD 2024年第4期79-90,共12页
Atomically‐dispersed copper sites coordinated with nitrogen‐doped carbon(Cu–N–C)can provide novel possibilities to enable highly selective and active electrochemical CO_(2) reduction reactions.However,the construc... Atomically‐dispersed copper sites coordinated with nitrogen‐doped carbon(Cu–N–C)can provide novel possibilities to enable highly selective and active electrochemical CO_(2) reduction reactions.However,the construction of optimal local electronic structures for nitrogen‐coordinated Cu sites(Cu–N_(4))on carbon remains challenging.Here,we synthesized the Cu–N–C catalysts with atomically‐dispersed edge‐hosted Cu–N_(4) sites(Cu–N_(4)C_(8))located in a micropore between two graphitic sheets via a facile method to control the concentration of metal precursor.Edge‐hosted Cu–N_(4)C_(8) catalysts outperformed the previously reported M–N–C catalysts for CO_(2)‐to‐CO conversion,achieving a maximum CO Faradaic efficiency(FECO)of 96%,a CO current density of–8.97 mA cm^(–2) at–0.8 V versus reversible hydrogen electrode(RHE),and over FECO of 90%from–0.6 to–1.0 V versus RHE.Computational studies revealed that the micropore of the graphitic layer in edge‐hosted Cu–N_(4)C_(8) sites causes the d‐orbital energy level of the Cu atom to shift upward,which in return decreases the occupancy of antibonding states in the*COOH binding.This research suggests new insights into tailoring the locally coordinated structure of the electrocatalyst at the atomic scale to achieve highly selective electrocatalytic reactions. 展开更多
关键词 atomic local structure density functional theory electrochemical CO_(2)reduction metal nitrogen‐doped carbon single‐atom catalyst
下载PDF
Physics package based on intracavity laser cooling ^(87)Rb atoms for space cold atom microwave clock
15
作者 邓思敏达 任伟 +9 位作者 项静峰 赵剑波 李琳 张迪 万金银 孟艳玲 蒋小军 李唐 刘亮 吕德胜 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第7期22-26,共5页
This article proposes a new physics package to enhance the frequency stability of the space cold atom clock with the advantages of a microgravity environment. Clock working processes, including atom cooling, atomic st... This article proposes a new physics package to enhance the frequency stability of the space cold atom clock with the advantages of a microgravity environment. Clock working processes, including atom cooling, atomic state preparation,microwave interrogation, and transition probability detection, are integrated into the cylindrical microwave cavity to achieve a high-performance and compact physics package for the space cold atom clock. We present the detailed design and ground-test results of the cold atom clock physics package in this article, which demonstrates a frequency stability of 1.2×10^(-12) τ^(-1/2) with a Ramsey linewidth of 12.5 Hz, and a better performance is predicted with a 1 Hz or a narrower Ramsey linewidth in microgravity environment. The miniaturized cold atom clock based on intracavity cooling has great potential for achieving space high-precision time-frequency reference in the future. 展开更多
关键词 atomic clock MICROGRAVITY microwave cavity space station frequency stability
下载PDF
FPGA and computer-vision-based atom tracking technology for scanning probe microscopy
16
作者 俞风度 刘利 +5 位作者 王肃珂 张新彪 雷乐 黄远志 马瑞松 郇庆 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期76-85,共10页
Atom tracking technology enhanced with innovative algorithms has been implemented in this study,utilizing a comprehensive suite of controllers and software independently developed domestically.Leveraging an on-board f... Atom tracking technology enhanced with innovative algorithms has been implemented in this study,utilizing a comprehensive suite of controllers and software independently developed domestically.Leveraging an on-board field-programmable gate array(FPGA)with a core frequency of 100 MHz,our system facilitates reading and writing operations across 16 channels,performing discrete incremental proportional-integral-derivative(PID)calculations within 3.4 microseconds.Building upon this foundation,gradient and extremum algorithms are further integrated,incorporating circular and spiral scanning modes with a horizontal movement accuracy of 0.38 pm.This integration enhances the real-time performance and significantly increases the accuracy of atom tracking.Atom tracking achieves an equivalent precision of at least 142 pm on a highly oriented pyrolytic graphite(HOPG)surface under room temperature atmospheric conditions.Through applying computer vision and image processing algorithms,atom tracking can be used when scanning a large area.The techniques primarily consist of two algorithms:the region of interest(ROI)-based feature matching algorithm,which achieves 97.92%accuracy,and the feature description-based matching algorithm,with an impressive 99.99%accuracy.Both implementation approaches have been tested for scanner drift measurements,and these technologies are scalable and applicable in various domains of scanning probe microscopy with broad application prospects in the field of nanoengineering. 展开更多
关键词 atom tracking FPGA computer vision drift measurement
下载PDF
Methanol steam reforming for hydrogen production driven by an atomically precise Cu catalyst
17
作者 Weigang Hu Haoqi Liu +7 位作者 Yuankun Zhang Jiawei Ji Guangjun Li Xiao Cai Xu Liu Wen Wu Xu Weiping Ding Yan Zhu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第7期1079-1084,共6页
Plasmon-induced hot-electron transfer from metal nanostructures is being intensely pursed in current photocatalytic research,however it remains elusive whether molecular-like metal clusters with excitonic behavior can... Plasmon-induced hot-electron transfer from metal nanostructures is being intensely pursed in current photocatalytic research,however it remains elusive whether molecular-like metal clusters with excitonic behavior can be used as light-harvesting materials in solar energy utilization such as photocatalytic methanol steam reforming.In this work,we report an atomically precise Cu_(13)cluster protected by dual ligands of thiolate and phosphine that can be viewed as the assembly of one top Cu atom and three Cu_(4)tetrahedra.The Cu_(13)H_(10)(SR)_(3)(PR’_(3))_(7)(SR=2,4-dichlorobenzenethiol,PR’_(3)=P(4-FC_(6)H_(4))_(3))cluster can give rise to highly efficient light-driven activity for methanol steam reforming toward H_(2)production. 展开更多
关键词 NANOCLUSTER PHOTOCATALYSIS Methanol steam reforming atomically precise Copper catalyst
下载PDF
Cooperation between single atom catalyst and support to promote nitrogen electroreduction to ammonia:A theoretical insight
18
作者 Wanying Guo Siyao Wang +2 位作者 Hongxia Wang Qinghai Cai Jingxiang Zhao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期336-344,共9页
The co-catalysis between single atom catalyst(SAC)and its support has recently emerged as a promising strategy to synergistically boost the catalytic activity of some complex electrochemical reactions,encompassing mul... The co-catalysis between single atom catalyst(SAC)and its support has recently emerged as a promising strategy to synergistically boost the catalytic activity of some complex electrochemical reactions,encompassing multiple intermediates and pathways.Herein,we utilized defective BC_(3)monolayer-supported SACs as a prototype to investigate the cooperative effects of SACs and their support on the catalytic performance of the nitrogen reduction reaction(NRR)for ammonia(NH_(3))production.The results showed that these SACs can be firmly stabilized on these defective BC_(3)supports with high stability against aggregation.Furthermore,co-activation of the inert N_(2)reactant was observed in certain embedded SACs and their neighboring B atoms on certain BC3 sheets due to the noticeable charge transfer and significant N–N bond elongation.Our high-throughput screening revealed that the Mo/DV_(CC)and W/DV_(CC)exhibit superior NRR catalytic performance,characterized by a low limiting potential of−0.33 and−0.43 V,respectively,which can be further increased under acid conditions based on the constant potential method.Moreover,varying NRR catalytic activities can be attributed to the differences in the valence state of active sites.Remarkably,further microkinetic modeling analysis displayed that the turnover frequency of N_(2)–to–NH_(3)conversion on Mo/DV_(CC)is as large as 1.20×10^(−3)s^(−1)site^(−1) at 700 K and 100 bar,thus guaranteeing its ultra-fast reaction rate.Our results not only suggest promising advanced electrocatalysts for NRR but also offer an effective avenue to regulate the electrocatalytic performance via the co-catalytic metal–support interactions. 展开更多
关键词 CO-CATALYSIS Single atom catalyst Nitrogen reduction DFT computations
下载PDF
Highly Sensitive Ammonia Gas Sensors at Room Temperature Based on the Catalytic Mechanism of N,C Coordinated Ni Single-Atom Active Center
19
作者 Wenjing Quan Jia Shi +10 位作者 Min Zeng Wen Lv Xiyu Chen Chao Fan Yongwei Zhang Zhou Liu Xiaolu Huang Jianhua Yang Nantao Hu Tao Wang Zhi Yang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第12期515-531,共17页
Significant challenges are posed by the limitations of gas sensing mechanisms for trace-level detection of ammonia(NH3).In this study,we propose to exploit single-atom catalytic activation and targeted adsorption prop... Significant challenges are posed by the limitations of gas sensing mechanisms for trace-level detection of ammonia(NH3).In this study,we propose to exploit single-atom catalytic activation and targeted adsorption properties to achieve highly sensitive and selective NH3 gas detection.Specifically,Ni singleatom active sites based on N,C coordination(Ni-N-C)were interfacially confined on the surface of two-dimensional(2D)MXene nanosheets(Ni-N-C/Ti_(3)C_(2)Tx),and a fully flexible gas sensor(MNPE-Ni-N-C/Ti_(3)C_(2)Tx)was integrated.The sensor demonstrates a remarkable response value to 5 ppm NH3(27.3%),excellent selectivity for NH3,and a low theoretical detection limit of 12.1 ppb.Simulation analysis by density functional calculation reveals that the Ni single-atom center with N,C coordination exhibits specific targeted adsorption properties for NH3.Additionally,its catalytic activation effect effectively reduces the Gibbs free energy of the sensing elemental reaction,while its electronic structure promotes the spill-over effect of reactive oxygen species at the gas-solid interface.The sensor has a dual-channel sensing mechanism of both chemical and electronic sensitization,which facilitates efficient electron transfer to the 2D MXene conductive network,resulting in the formation of the NH3 gas molecule sensing signal.Furthermore,the passivation of MXene edge defects by a conjugated hydrogen bond network enhances the long-term stability of MXene-based electrodes under high humidity conditions.This work achieves highly sensitive room-temperature NH3 gas detection based on the catalytic mechanism of Ni single-atom active center with N,C coordination,which provides a novel gas sensing mechanism for room-temperature trace gas detection research. 展开更多
关键词 Gas sensor Single atom Catalytic activation Targeted adsorption End-sealing passivation
下载PDF
Atomically Dispersed Ruthenium Catalysts with Open Hollow Structure for Lithium-Oxygen Batteries
20
作者 Xin Chen Yu Zhang +5 位作者 Chang Chen Huinan Li Yuran Lin Ke Yu Caiyun Nan Chen Chen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期154-164,共11页
Lithium–oxygen battery with ultrahigh theoretical energy density is considered a highly competitive next-generation energy storage device,but its practical application is severely hindered by issues such as difficult... Lithium–oxygen battery with ultrahigh theoretical energy density is considered a highly competitive next-generation energy storage device,but its practical application is severely hindered by issues such as difficult decomposition of discharge products at present.Here,we have developed N-doped carbon anchored atomically dispersed Ru sites cathode catalyst with open hollow structure(h-RuNC)for Lithium–oxygen battery.On one hand,the abundance of atomically dispersed Ru sites can effectively catalyze the formation and decomposition of discharge products,thereby greatly enhancing the redox kinetics.On the other hand,the open hollow structure not only enhances the mass activity of atomically dispersed Ru sites but also improves the diffusion efficiency of catalytic molecules.Therefore,the excellent activity from atomically dispersed Ru sites and the enhanced diffusion from open hollow structure respectively improve the redox kinetics and cycling stability,ultimately achieving a high-performance lithium–oxygen battery. 展开更多
关键词 atomically dispersed Open hollow structure Discharge product LITHIUM Oxygen battery
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部