Efficient and environmentally friendly production of high-quality continuous fiber coatings using current preparation methods is highly challenging due to issues such as scale and batch processing restrictions,low dep...Efficient and environmentally friendly production of high-quality continuous fiber coatings using current preparation methods is highly challenging due to issues such as scale and batch processing restrictions,low deposition rate,high energy consumption,and utilization of multiple environmentally hazardous steps.To address these challenges,we propose a stable and efficient wet chemical deposition coating method for high-throughput online continuous preparation of boron nitride(BN)coatings on ceramic fibers under an ambient environment.Our process involves surface modification,in-situ wet chemical deposition,and heat treatment,and all seamlessly connecting with the ceramic fiber preparation process through continuous stretching.Hydrophilic groups were introduced via surface modification enhancing wettability of the fiber surface with impregnating solution.An in-situ reaction and atom migration improve uniformity and binding of the coating.As a result,outstanding impregnation and adhesion properties are achieved.A comprehensive analysis to evaluate the impact of the BN coatings was conducted,which demonstrates that the BN-coated fibers exhibit a remarkable 36%increase in tensile strength,a 133%increase in fracture toughness,and enhanced temperature resistance of up to 1600℃.It provides a secure and efficient platform for cost-effective production of functional and high-quality coatings through targeted surface modification and rapid stretching impregnation.展开更多
To investigate the effects of material combinations and velocity conditions on atomic diffusion behavior near collision interfaces,this study simulates the atomic diffusion behavior near collision interfaces in Cu-Al,...To investigate the effects of material combinations and velocity conditions on atomic diffusion behavior near collision interfaces,this study simulates the atomic diffusion behavior near collision interfaces in Cu-Al,Al-Al and Cu-Cu combinations fabricated through collision welding using molecular dynamic(MD)simulation.The atomic diffusion behaviors are compared between similar metal combinations(Al-Al,Cu-Cu)and dissimilar metal combinations(Al-Cu).By combining the simulation results and classical diffusion theory,the diffusion coefficients for similar and dissimilar metal material combinations under different velocity conditions are obtained.The effects of material combinations and collision velocity on diffusion behaviors are also discussed.The diffusion behaviors of dissimilar material combinations strongly depend on the transverse velocity,whereas those of the similar material combinations are more dependent on the longitudinal velocity.These findings can provide guidance for optimizing welding parameters.展开更多
An innovative physical simulation apparatus, including high speed camera, red thermal imaging system, and mechanical quantity sensor, was used to investigate the friction heat generation and atom diffusion behavior du...An innovative physical simulation apparatus, including high speed camera, red thermal imaging system, and mechanical quantity sensor, was used to investigate the friction heat generation and atom diffusion behavior during Mg-Ti friction welding process. The results show that the friction coefficient mainly experiences two steady stages. The first steady stage corresponds to the Coulomb friction with material abrasion. The second steady stage corresponds to the stick friction with fully plastic flow. Moreover, the increasing rates of axial displacement, temperature and friction coefficient are obviously enhanced with the increase of rotation speed and axial pressure. It can also be found that the there exists rapid diffusion phenomenon in the Mg-Ti friction welding system. The large deformation activated diffusion coefficient is about 105 higher than that activated by thermal.展开更多
Solid-state bonding between pure titanium and Ti6Al4V(TC4)alloy was conducted by a new bonding method named as rigid restraint thermal self-compressing bonding.Effects of heating time on bonding interface,atom diffusi...Solid-state bonding between pure titanium and Ti6Al4V(TC4)alloy was conducted by a new bonding method named as rigid restraint thermal self-compressing bonding.Effects of heating time on bonding interface,atom diffusion and mechanical properties of the joints were studied.Results show that atom diffusion between pure titanium and TC4 alloy significantly takes place during bonding.The diffusion depths of Al and V in pure titanium side are increased with increasing heating time.Due to the enhancement of atom diffusion,bond quality of the bonding interface is improved along with the increase of heating time.The heating time seems to have little effect on microhardness distribution across the joint.However,the tensile strength and ductility of the joint have close relation to heating time.Prolonging heating time can improve the tensile strength and ductility of the joint,especially the latter.When the heating time increases to 450 s,solid-state joint with good combination of strength and ductility is attained.展开更多
The adsorption and diffusion behaviors of alkali and alkaline-earth metal atoms on silicane and silicene are both investigated by using a first-principles method within the frame of density functional theory.Silicane ...The adsorption and diffusion behaviors of alkali and alkaline-earth metal atoms on silicane and silicene are both investigated by using a first-principles method within the frame of density functional theory.Silicane is staler against the metal adatoms than silicene.Hydrogenation makes the adsorption energies of various metal atoms considered in our calculations on silicane significantly lower than those on silicene.Similar diffusion energy barriers of alkali metal atoms on silicane and silicene could be observed.However,the diffusion energy barriers of alkali-earth metal atoms on silicane are essentially lower than those on silicene due to the small structural distortion and weak interaction between metal atoms and silicane substrate.Combining the adsorption energy with the diffusion energy barriers,it is found that the clustering would occur when depositing metal atoms on perfect hydrogenated silicene with relative high coverage.In order to avoid forming a metal cluster,we need to remove the hydrogen atoms from the silicane substrate to achieve the defective silicane.Our results are helpful for understanding the interaction between metal atoms and silicene-based two-dimensional materials.展开更多
The atom (Ag,Cu) diffusion behavior and the effect of technology on the interface of rolled Ag/Cu composite contact were investigated. The concentration of Ag and Cu atoms near the interface was determined with electr...The atom (Ag,Cu) diffusion behavior and the effect of technology on the interface of rolled Ag/Cu composite contact were investigated. The concentration of Ag and Cu atoms near the interface was determined with electron probe. The bonding strength of composite interface was tested and the fracture in tensile sample was observed by SEM. The results show that there was inter diffusion of Ag and Cu atoms on the interface, which formed compact layer with high bonding strength of 98 MPa. The practical application proved that the Ag/Cu composite interface is reliable.展开更多
The potential energy surface for the migration of an extra Ga atom on the GaAs(001) β2(2×4) surfuce was mapped out by performing calculations at the level of analytical bond-order potential. Based on this ca...The potential energy surface for the migration of an extra Ga atom on the GaAs(001) β2(2×4) surfuce was mapped out by performing calculations at the level of analytical bond-order potential. Based on this calculations, we found some lower-energy sites for the adsorption of an extra Ga atom in the surface, which were in agreement with the experimental data. Moreover, many possible pathways for an extra Ga atom diffusing in this surface were revealed. According to the relative energies of the possible pathways, the individual Ga adatoms preferably keep their diffusion in two pathways parallel to the As dimers. This result can be understood using the strain caused by the diffusing Ga atom in the pathways. In addition, the simulated kinetic processes of the extra Ga atom diffusing in different pathways at finite temperatures support the prediction from our calculated potential energy surface.展开更多
Molecular dynamics simulation employing the embedded atom method potential is utilized to investigate nanoscale surface diffusion mechanisms of binary heterogeneous adatoms clusters at 300 K, 500 K, and 700 K. Surface...Molecular dynamics simulation employing the embedded atom method potential is utilized to investigate nanoscale surface diffusion mechanisms of binary heterogeneous adatoms clusters at 300 K, 500 K, and 700 K. Surface diffusion of heterogeneous adatoms clusters can be vital for the binary island growth on the surface and can be useful for the formation of alloy-based thin film surface through atomic exchange process. The results of the diffusion process show that at 300 K, the diffusion of small adatoms clusters shows hopping, sliding, and shear motion; whereas for large adatoms clusters(hexamer and above), the diffusion is negligible. At 500 K, small adatoms clusters, i.e., dimer, show almost all possible diffusion mechanisms including the atomic exchange process; however no such exchange is observed for adatoms clusters greater than dimer. At 700 K, the exchange mechanism dominates for all types of clusters, where Zr adatoms show maximum tendency and Ag adatoms show minimum or no tendency toward the exchange process. Separation and recombination of one or more adatoms are also observed at 500 K and 700 K. The Ag adatoms also occupy pop-up positions over the adatoms clusters for short intervals. At 700 K, the vacancies are also generated in the vicinity of the adatoms cluster,vacancy formation, filling, and shifting can be observed from the results.展开更多
This study shows the preparation of a TiO2 coated Pt/C(TiO2/Pt/C) by atomic layer deposition(ALD),and the examination of the possibility for TiO2/Pt/C to be used as a durable cathode catalyst in polymer electrolyt...This study shows the preparation of a TiO2 coated Pt/C(TiO2/Pt/C) by atomic layer deposition(ALD),and the examination of the possibility for TiO2/Pt/C to be used as a durable cathode catalyst in polymer electrolyte fuel cells(PEFCs). Cyclic voltammetry results revealed that TiO2/Pt/C catalyst which has 2 nm protective layer showed similar activity for the oxygen reduction reaction compared to Pt/C catalysts and they also had good durability. TiO2/Pt/C prepared by 10 ALD cycles degraded 70% after 2000 Accelerated degradation test, while Pt/C corroded 92% in the same conditions. TiO2 ultrathin layer by ALD is able to achieve a good balance between the durability and activity, leading to TiO2/Pt/C as a promising cathode catalyst for PEFCs. The mechanism of the TiO2 protective layer used to prevent the degradation of Pt/C is discussed.展开更多
For more than a half century, my colleagues and I in the Stony Brook High Pressure Laboratory have profited from collaborations with French scientists in their laboratories in Orsay, Paris, Toulouse, Lille, Lyon, Stra...For more than a half century, my colleagues and I in the Stony Brook High Pressure Laboratory have profited from collaborations with French scientists in their laboratories in Orsay, Paris, Toulouse, Lille, Lyon, Strasbourg and </span><span style="font-family:Verdana;">Rennes. These interactions have included postdoctoral appointments of French colleagues in our laboratory as well as two année sabbatique by me;in 1983-84</span><span style="font-family:Verdana;">, in the Laboratoire de Géophysique et Géodynamique Interne at the Université Paris XI in Orsay and in 2020-2003 in the Laboratoire des Méchanismes et Transfert en Géologie at the Université Paul Sabatier in Toulouse. The objective of this report is to relate this history and to illustrate the scientific advances which </span></span><span style="font-family:Verdana;">resulted</span><span style="font-family:Verdana;"> from these collaborations.展开更多
The interfacial bonding of Ag-Cu (they are limited soluble) formed by the technology of cold pressure welding was discussed from the point of metallurgic view in this paper. Meanwhile, tensile test and microscopic tes...The interfacial bonding of Ag-Cu (they are limited soluble) formed by the technology of cold pressure welding was discussed from the point of metallurgic view in this paper. Meanwhile, tensile test and microscopic test were adopted for studying the state of interfacial bonding, suggesting that the joint of Ag-Cu has not only strong welding joint but also atomic diffusion on the interface. For Ag-Cu, the interaction of dislocation caused by plastic deformation will cause the strain and the vibration of microconstructer defects, accompanied by emitting energy. The energy increases the atomic action and the amplitude of atomic vibration, and the result is that the atom can diffuse to several lattice parameters deep from interface to inner metals. Therefore, under the condition of chemical potential gradient, the special technique, cold pressure welding rather than basic requirements of diffusion should be taken into account. During the cold pressure welding, plastic deformation plays an important role for it causes the metals′ displacement, crystal defects, further activates the surface atoms. Finally, the fracture of atomic bonding leads to the atomic exchange and diffusion between the new metals′ surfaces.In other words the metals Ag,Cu can achieve solidate bonding by cold pressure welding accompanied by the atomic diffusion. Moreover, theoretical analysis and calculation on the basis of thermodynamics, crystallogy, so- lid physics,etc, have been applied to calculate the amount of atomic diffusion, which has further proved the testing results that joint Ag-Cu has strong bonding strength through the mechanism of atomic diffusion.展开更多
A mathematical expression of the crystal growth rate during crystallization of the amorphous alloys was derived from the micromechanism of crystallization newly developed by the authors. Thus, the satisfactory explana...A mathematical expression of the crystal growth rate during crystallization of the amorphous alloys was derived from the micromechanism of crystallization newly developed by the authors. Thus, the satisfactory explanation of the experimental results obtained by Nunogaki et al., Heimendahl et al. and the authors might be found. It seems also to be modelled with the expression for the crystal growth and the crystal size influenced by time during the crystallization of amorphous Ni-P alloy foil at in situ heating. Based on the expression, the factors influencing the crystal growth rate, such as temperature, time and microstructure of amorphous alloys have been discussed.展开更多
Ion beam sputtering profiling in combination with SIMS technique was employed to investigate the Al diffusion in Fe_(78)Si_0B_(13)amorphous alloy.Between 320 and 380℃,the diffusion coefficients vary from 2.43×10...Ion beam sputtering profiling in combination with SIMS technique was employed to investigate the Al diffusion in Fe_(78)Si_0B_(13)amorphous alloy.Between 320 and 380℃,the diffusion coefficients vary from 2.43×10^(-22) to 2.01×10^(-21)m^2s^(-1),and an Arrhenius relationship was established as:D_0=2.02×10~_(12)exp(-1.17/kT)展开更多
The addition of early transition metals(ETMs)into Fe-based amorphous alloys is practically found to be effective in reducing theα-Fe grain size in crystallization process.In this paper,by using ab initio molecular dy...The addition of early transition metals(ETMs)into Fe-based amorphous alloys is practically found to be effective in reducing theα-Fe grain size in crystallization process.In this paper,by using ab initio molecular dynamics simulations,the mechanism of the effect of two typical ETMs(Nb and W)on nano-crystallization is studied.It is found that the diffusion ability in amorphous alloy is mainly determined by the bonding energy of the atom rather than the size or weight of the atom.The alloying of B dramatically reduces the diffusion ability of the ETM atoms,which prevents the supply of Fe near the grain surface and consequently suppresses the growth ofα-Fe grains.Moreover,the difference in grain refining effectiveness between Nb and W could be attributed to the larger bonding energy between Nb and B than that between W and B.展开更多
Thermal self-compressing bonding(TSCB) is a new solid-state bonding method pioneered by the authors. With electron beam as the non-melted heat source, previous experimental study performed on titanium alloys has prove...Thermal self-compressing bonding(TSCB) is a new solid-state bonding method pioneered by the authors. With electron beam as the non-melted heat source, previous experimental study performed on titanium alloys has proved the feasibility of TSCB. However, the thermal stress–strain process during bonding, which is of very important significance in revealing the mechanism of TSCB, was not analysed. In this paper, finite element analysis method is adopted to numerically study the thermal elasto-plastic stress–strain cycle of thermal self-compressing bonding. It is found that due to the localized heating, a non-uniform temperature distribution is formed during bonding, with the highest temperature existed on the bond interface. The expansion of high temperature materials adjacent to the bond interface are restrained by surrounding cool materials and rigid restraints, and thus an internal elasto-plastic stress–strain field is developed by itself which makes the bond interface subjected to thermal compressive action. This thermal self-compressing action combined with the high temperature on the bond interface promotes the atom diffusion across the bond interface to produce solid-state joints. Due to the relatively large plastic deformation, rigid restraint TSCB obtains sound joints in relatively short time compared to diffusion bonding.展开更多
The atomizer with micro cone apertures has advantages of ultra-fine atomized droplets, low power consumption and low temperature rise. The current research of this kind of atomizer mainly focuses on the performance an...The atomizer with micro cone apertures has advantages of ultra-fine atomized droplets, low power consumption and low temperature rise. The current research of this kind of atomizer mainly focuses on the performance and its application while there is less research of the principle of the atomization. Under the analysis of the dispenser and its micro-tapered aperture's deformation, the volume changes during the deformation and vibration of the micro-tapered aperture on the dispenser are calculated by coordinate transformation. Based on the characters of the flow resistance in a cone aperture, it is found that the dynamic cone angle results from periodical changes of the volume of the micro-tapered aperture of the atomizer and this change drives one-way flows. Besides, an experimental atomization platform is established to measure the atomization rates with different resonance frequencies of the cone aperture atomizer. The atomization performances of cone aperture and straight aperture atomizers are also measured. The experimental results show the existence of the pumping effect of the dynamic tapered angle. This effect is usually observed in industries that require low dispersion and micro- and nanoscale grain sizes, such as during production of high-pressure nozzles and inhalation therapy. Strategies to minimize the pumping effect of the dynamic cone angle or improve future designs are important concerns. This research proposes that dynamic micro-tapered angle is an important cause of atomization of the atomizer with micro cone apertures.展开更多
Transmission electron microscopy (TEM) observations were carried out for examining the precipitation behavior in a Cu-Sn-Ni-Zn-P lead frame material. TEM observations revealed that the precipitate is hexagonal Ni5P2 a...Transmission electron microscopy (TEM) observations were carried out for examining the precipitation behavior in a Cu-Sn-Ni-Zn-P lead frame material. TEM observations revealed that the precipitate is hexagonal Ni5P2 and the orientation relationship between the Cu matrix and Ni$Pi precipitate is (111)fcc//(0001)hcp, [101]fcc//[1120]hcp, where the suffix fcc denotes the Cu matrix and hep denotes the hexagonal Ni5P2 precipitate. The Ni5P2 precipitate is ovoidal in shape at the beginning of aging at lower temperature. By prolonging the aging time or increasing the aging temperature, Ni5P2 precipitate grows and shows a rod-like shape. The Ni added Cu based lead frame material has a comparative mechanical properties with that of TAMAC15 which has been developed and used in electrical industry.展开更多
In the present work,a wavelength-selected plasma imaging analysis system is presented and used to track photons emitted from single-trapped nanoparticles in air at atmospheric pressure.The isolated nanoentities were a...In the present work,a wavelength-selected plasma imaging analysis system is presented and used to track photons emitted from single-trapped nanoparticles in air at atmospheric pressure.The isolated nanoentities were atomized and excited into plasma state using single nanosecond laser pulses.The use of appropriate wavelength filters alongside time-optimized acquisition settings enabled the detection of molecular and atomic emissions in the plasma.The photon detection efficiency of the imaging line resulted in a signal>400 times larger than the simultaneously-acquired dispersive spectroscopy data.The increase in sensitivity outlined the evolution of diverse physicochemical processes at the single particle scale which included heat and momentum transfer from the plasma into the particle as wells as chemical reactions.The imaging detection of excited fragments evidenced different diffusion kinetics and time frames for atoms and molecules and their influence upon both the spectroscopic emission readout and fabrication processes using the plasma as a reactor.Moreover,the origin of molecular species,whether naturally-occurring or derived from a chemical reaction in the plasma,could also be studied on the basis of compositional gradients found on the images.Limits of detection for the inspected species ranged from tens to hundreds attograms,thus leading to an exceptional sensing principle for single nanoentities that may impact several areas of science and technology.展开更多
Indirect additive manufacturing(AM)methods have recently attracted attention from researchers thanks to their great potential for cheap,straightforward,and small-scale production of metallic components.Atomic diffusio...Indirect additive manufacturing(AM)methods have recently attracted attention from researchers thanks to their great potential for cheap,straightforward,and small-scale production of metallic components.Atomic diffusion additive manufacturing(ADAM),a variant of indirect AM methods,is a layer-wise indirect AM process recently developed based on fused deposition modeling and metal injection molding.However,there is still limited knowledge of the process conditions and material properties fabricated through this process,where sintering plays a crucial role in the final consolidation of parts.Therefore,this research,for the first time,systematically investigates the impact of various sintering conditions on the shrinkage,relative density,microstructure,and hardness of the 17-4PH ADAM samples.For this reason,as-washed samples were sintered under different time-temperature combinations.The sample density was evaluated using Archimedes,computed tomography,and image analysis methods.The outcomes revealed that sintering variables significantly impacted the density of brown 17-4PH Stainless Steel samples.The results indicated more than 99% relative densities,higher than the value reported by Markforged Inc.(~96%).Based on parallel porosities observed in the computed tomography results,it can be suggested that by modifying the infill pattern during printing,it would be possible to increase the final relative density.The microhardness of the sintered samples in this study was higher than that of the standard sample provided by Markforged Inc.Sintering at 1330℃ for 4 h increased the density of the printed sample without compromising its mechanical properties.According to X-ray diffraction analysis,the standard sample provided by Markforged Inc.and“1330℃—4 h”one had similar stable phases,although copper-rich intermetallics were more abundant in the microstructure of reference samples.This study is expected to facilitate the adoption of indirect metal AM methods by different sectors,thanks to the high achievable relative densities reported here.展开更多
We have introduced a 5-parameter Morse function to simulate the pairwise poten-tial and studied the adsorption and diffusion of hydrogen atoms on the Ni low indexsurfaces by pairwise method and satistying results were...We have introduced a 5-parameter Morse function to simulate the pairwise poten-tial and studied the adsorption and diffusion of hydrogen atoms on the Ni low indexsurfaces by pairwise method and satistying results were obtained. In this letter,we further investigate the properties of the adsorption and diffusion of hydrogen at-oms on the Ni (115) stepped surface by the same method and the optimumparameters.展开更多
基金This work was supported by the Natural Science Foundation for Excellent Young Scholars of Hunan Province(No.2021JJ20048).
文摘Efficient and environmentally friendly production of high-quality continuous fiber coatings using current preparation methods is highly challenging due to issues such as scale and batch processing restrictions,low deposition rate,high energy consumption,and utilization of multiple environmentally hazardous steps.To address these challenges,we propose a stable and efficient wet chemical deposition coating method for high-throughput online continuous preparation of boron nitride(BN)coatings on ceramic fibers under an ambient environment.Our process involves surface modification,in-situ wet chemical deposition,and heat treatment,and all seamlessly connecting with the ceramic fiber preparation process through continuous stretching.Hydrophilic groups were introduced via surface modification enhancing wettability of the fiber surface with impregnating solution.An in-situ reaction and atom migration improve uniformity and binding of the coating.As a result,outstanding impregnation and adhesion properties are achieved.A comprehensive analysis to evaluate the impact of the BN coatings was conducted,which demonstrates that the BN-coated fibers exhibit a remarkable 36%increase in tensile strength,a 133%increase in fracture toughness,and enhanced temperature resistance of up to 1600℃.It provides a secure and efficient platform for cost-effective production of functional and high-quality coatings through targeted surface modification and rapid stretching impregnation.
基金supported by the Scientific Research Project of Hunan Provincial Department of Education(22C0642).
文摘To investigate the effects of material combinations and velocity conditions on atomic diffusion behavior near collision interfaces,this study simulates the atomic diffusion behavior near collision interfaces in Cu-Al,Al-Al and Cu-Cu combinations fabricated through collision welding using molecular dynamic(MD)simulation.The atomic diffusion behaviors are compared between similar metal combinations(Al-Al,Cu-Cu)and dissimilar metal combinations(Al-Cu).By combining the simulation results and classical diffusion theory,the diffusion coefficients for similar and dissimilar metal material combinations under different velocity conditions are obtained.The effects of material combinations and collision velocity on diffusion behaviors are also discussed.The diffusion behaviors of dissimilar material combinations strongly depend on the transverse velocity,whereas those of the similar material combinations are more dependent on the longitudinal velocity.These findings can provide guidance for optimizing welding parameters.
基金Projects (51101126, 51071123) supported by the National Natural Science Foundation of ChinaProjects (20110491684, 2012T50817) supported by the China Postdoctoral Science FoundationProject (20110942K) supported by the Open Fund of State Key Laboratory of Powder Metallurgy of Central South University, China
文摘An innovative physical simulation apparatus, including high speed camera, red thermal imaging system, and mechanical quantity sensor, was used to investigate the friction heat generation and atom diffusion behavior during Mg-Ti friction welding process. The results show that the friction coefficient mainly experiences two steady stages. The first steady stage corresponds to the Coulomb friction with material abrasion. The second steady stage corresponds to the stick friction with fully plastic flow. Moreover, the increasing rates of axial displacement, temperature and friction coefficient are obviously enhanced with the increase of rotation speed and axial pressure. It can also be found that the there exists rapid diffusion phenomenon in the Mg-Ti friction welding system. The large deformation activated diffusion coefficient is about 105 higher than that activated by thermal.
基金financial support provided by Beijing Aeronautical Manufacturing Technology Research Institutethe help provided by Science and Technology, China, on Power Beam Processes Laboratory at Beijing Aeronautical Manufacturing Technology Research Institute, China
文摘Solid-state bonding between pure titanium and Ti6Al4V(TC4)alloy was conducted by a new bonding method named as rigid restraint thermal self-compressing bonding.Effects of heating time on bonding interface,atom diffusion and mechanical properties of the joints were studied.Results show that atom diffusion between pure titanium and TC4 alloy significantly takes place during bonding.The diffusion depths of Al and V in pure titanium side are increased with increasing heating time.Due to the enhancement of atom diffusion,bond quality of the bonding interface is improved along with the increase of heating time.The heating time seems to have little effect on microhardness distribution across the joint.However,the tensile strength and ductility of the joint have close relation to heating time.Prolonging heating time can improve the tensile strength and ductility of the joint,especially the latter.When the heating time increases to 450 s,solid-state joint with good combination of strength and ductility is attained.
基金Project supported by the Natural Science Foundation of Jiangxi Province,China(Grant Nos.20152ACB21014,20151BAB202006,and 20142BAB212002)the Fund from the Jiangxi Provincial Educational Committee,China(Grant No.GJJ14254)supported by the Oversea Returned Project from the Ministry of Education,China
文摘The adsorption and diffusion behaviors of alkali and alkaline-earth metal atoms on silicane and silicene are both investigated by using a first-principles method within the frame of density functional theory.Silicane is staler against the metal adatoms than silicene.Hydrogenation makes the adsorption energies of various metal atoms considered in our calculations on silicane significantly lower than those on silicene.Similar diffusion energy barriers of alkali metal atoms on silicane and silicene could be observed.However,the diffusion energy barriers of alkali-earth metal atoms on silicane are essentially lower than those on silicene due to the small structural distortion and weak interaction between metal atoms and silicane substrate.Combining the adsorption energy with the diffusion energy barriers,it is found that the clustering would occur when depositing metal atoms on perfect hydrogenated silicene with relative high coverage.In order to avoid forming a metal cluster,we need to remove the hydrogen atoms from the silicane substrate to achieve the defective silicane.Our results are helpful for understanding the interaction between metal atoms and silicene-based two-dimensional materials.
文摘The atom (Ag,Cu) diffusion behavior and the effect of technology on the interface of rolled Ag/Cu composite contact were investigated. The concentration of Ag and Cu atoms near the interface was determined with electron probe. The bonding strength of composite interface was tested and the fracture in tensile sample was observed by SEM. The results show that there was inter diffusion of Ag and Cu atoms on the interface, which formed compact layer with high bonding strength of 98 MPa. The practical application proved that the Ag/Cu composite interface is reliable.
基金ACKNOWLEDGMENTS This work was supported by the Fund of University of Science and Technology of China, the Fund of Chinese Academy of Science, and the National Natural Science Foundation of China (No.50121202 and No.60176024).
文摘The potential energy surface for the migration of an extra Ga atom on the GaAs(001) β2(2×4) surfuce was mapped out by performing calculations at the level of analytical bond-order potential. Based on this calculations, we found some lower-energy sites for the adsorption of an extra Ga atom in the surface, which were in agreement with the experimental data. Moreover, many possible pathways for an extra Ga atom diffusing in this surface were revealed. According to the relative energies of the possible pathways, the individual Ga adatoms preferably keep their diffusion in two pathways parallel to the As dimers. This result can be understood using the strain caused by the diffusing Ga atom in the pathways. In addition, the simulated kinetic processes of the extra Ga atom diffusing in different pathways at finite temperatures support the prediction from our calculated potential energy surface.
文摘Molecular dynamics simulation employing the embedded atom method potential is utilized to investigate nanoscale surface diffusion mechanisms of binary heterogeneous adatoms clusters at 300 K, 500 K, and 700 K. Surface diffusion of heterogeneous adatoms clusters can be vital for the binary island growth on the surface and can be useful for the formation of alloy-based thin film surface through atomic exchange process. The results of the diffusion process show that at 300 K, the diffusion of small adatoms clusters shows hopping, sliding, and shear motion; whereas for large adatoms clusters(hexamer and above), the diffusion is negligible. At 500 K, small adatoms clusters, i.e., dimer, show almost all possible diffusion mechanisms including the atomic exchange process; however no such exchange is observed for adatoms clusters greater than dimer. At 700 K, the exchange mechanism dominates for all types of clusters, where Zr adatoms show maximum tendency and Ag adatoms show minimum or no tendency toward the exchange process. Separation and recombination of one or more adatoms are also observed at 500 K and 700 K. The Ag adatoms also occupy pop-up positions over the adatoms clusters for short intervals. At 700 K, the vacancies are also generated in the vicinity of the adatoms cluster,vacancy formation, filling, and shifting can be observed from the results.
基金supported by the Ministry of Knowledge Economy (MKE, Korea) under the Global Collaborative R&D program supervised by the KIAT (N0000698)
文摘This study shows the preparation of a TiO2 coated Pt/C(TiO2/Pt/C) by atomic layer deposition(ALD),and the examination of the possibility for TiO2/Pt/C to be used as a durable cathode catalyst in polymer electrolyte fuel cells(PEFCs). Cyclic voltammetry results revealed that TiO2/Pt/C catalyst which has 2 nm protective layer showed similar activity for the oxygen reduction reaction compared to Pt/C catalysts and they also had good durability. TiO2/Pt/C prepared by 10 ALD cycles degraded 70% after 2000 Accelerated degradation test, while Pt/C corroded 92% in the same conditions. TiO2 ultrathin layer by ALD is able to achieve a good balance between the durability and activity, leading to TiO2/Pt/C as a promising cathode catalyst for PEFCs. The mechanism of the TiO2 protective layer used to prevent the degradation of Pt/C is discussed.
文摘For more than a half century, my colleagues and I in the Stony Brook High Pressure Laboratory have profited from collaborations with French scientists in their laboratories in Orsay, Paris, Toulouse, Lille, Lyon, Strasbourg and </span><span style="font-family:Verdana;">Rennes. These interactions have included postdoctoral appointments of French colleagues in our laboratory as well as two année sabbatique by me;in 1983-84</span><span style="font-family:Verdana;">, in the Laboratoire de Géophysique et Géodynamique Interne at the Université Paris XI in Orsay and in 2020-2003 in the Laboratoire des Méchanismes et Transfert en Géologie at the Université Paul Sabatier in Toulouse. The objective of this report is to relate this history and to illustrate the scientific advances which </span></span><span style="font-family:Verdana;">resulted</span><span style="font-family:Verdana;"> from these collaborations.
文摘The interfacial bonding of Ag-Cu (they are limited soluble) formed by the technology of cold pressure welding was discussed from the point of metallurgic view in this paper. Meanwhile, tensile test and microscopic test were adopted for studying the state of interfacial bonding, suggesting that the joint of Ag-Cu has not only strong welding joint but also atomic diffusion on the interface. For Ag-Cu, the interaction of dislocation caused by plastic deformation will cause the strain and the vibration of microconstructer defects, accompanied by emitting energy. The energy increases the atomic action and the amplitude of atomic vibration, and the result is that the atom can diffuse to several lattice parameters deep from interface to inner metals. Therefore, under the condition of chemical potential gradient, the special technique, cold pressure welding rather than basic requirements of diffusion should be taken into account. During the cold pressure welding, plastic deformation plays an important role for it causes the metals′ displacement, crystal defects, further activates the surface atoms. Finally, the fracture of atomic bonding leads to the atomic exchange and diffusion between the new metals′ surfaces.In other words the metals Ag,Cu can achieve solidate bonding by cold pressure welding accompanied by the atomic diffusion. Moreover, theoretical analysis and calculation on the basis of thermodynamics, crystallogy, so- lid physics,etc, have been applied to calculate the amount of atomic diffusion, which has further proved the testing results that joint Ag-Cu has strong bonding strength through the mechanism of atomic diffusion.
文摘A mathematical expression of the crystal growth rate during crystallization of the amorphous alloys was derived from the micromechanism of crystallization newly developed by the authors. Thus, the satisfactory explanation of the experimental results obtained by Nunogaki et al., Heimendahl et al. and the authors might be found. It seems also to be modelled with the expression for the crystal growth and the crystal size influenced by time during the crystallization of amorphous Ni-P alloy foil at in situ heating. Based on the expression, the factors influencing the crystal growth rate, such as temperature, time and microstructure of amorphous alloys have been discussed.
文摘Ion beam sputtering profiling in combination with SIMS technique was employed to investigate the Al diffusion in Fe_(78)Si_0B_(13)amorphous alloy.Between 320 and 380℃,the diffusion coefficients vary from 2.43×10^(-22) to 2.01×10^(-21)m^2s^(-1),and an Arrhenius relationship was established as:D_0=2.02×10~_(12)exp(-1.17/kT)
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFB0300502)the Shenzhen Municipal Fundamental Science and Technology Research Program,China(Grant No.JCYJ20170815162201821)the Fundamental Research Funds for Central Universities,China(Grant No.31020170QD102)
文摘The addition of early transition metals(ETMs)into Fe-based amorphous alloys is practically found to be effective in reducing theα-Fe grain size in crystallization process.In this paper,by using ab initio molecular dynamics simulations,the mechanism of the effect of two typical ETMs(Nb and W)on nano-crystallization is studied.It is found that the diffusion ability in amorphous alloy is mainly determined by the bonding energy of the atom rather than the size or weight of the atom.The alloying of B dramatically reduces the diffusion ability of the ETM atoms,which prevents the supply of Fe near the grain surface and consequently suppresses the growth ofα-Fe grains.Moreover,the difference in grain refining effectiveness between Nb and W could be attributed to the larger bonding energy between Nb and B than that between W and B.
基金Supported by National Natural Science Foundation of China(Grant No.51705491)
文摘Thermal self-compressing bonding(TSCB) is a new solid-state bonding method pioneered by the authors. With electron beam as the non-melted heat source, previous experimental study performed on titanium alloys has proved the feasibility of TSCB. However, the thermal stress–strain process during bonding, which is of very important significance in revealing the mechanism of TSCB, was not analysed. In this paper, finite element analysis method is adopted to numerically study the thermal elasto-plastic stress–strain cycle of thermal self-compressing bonding. It is found that due to the localized heating, a non-uniform temperature distribution is formed during bonding, with the highest temperature existed on the bond interface. The expansion of high temperature materials adjacent to the bond interface are restrained by surrounding cool materials and rigid restraints, and thus an internal elasto-plastic stress–strain field is developed by itself which makes the bond interface subjected to thermal compressive action. This thermal self-compressing action combined with the high temperature on the bond interface promotes the atom diffusion across the bond interface to produce solid-state joints. Due to the relatively large plastic deformation, rigid restraint TSCB obtains sound joints in relatively short time compared to diffusion bonding.
基金Supported by National Natural Science Foundation of China(Grant Nos.51375227,91223201)
文摘The atomizer with micro cone apertures has advantages of ultra-fine atomized droplets, low power consumption and low temperature rise. The current research of this kind of atomizer mainly focuses on the performance and its application while there is less research of the principle of the atomization. Under the analysis of the dispenser and its micro-tapered aperture's deformation, the volume changes during the deformation and vibration of the micro-tapered aperture on the dispenser are calculated by coordinate transformation. Based on the characters of the flow resistance in a cone aperture, it is found that the dynamic cone angle results from periodical changes of the volume of the micro-tapered aperture of the atomizer and this change drives one-way flows. Besides, an experimental atomization platform is established to measure the atomization rates with different resonance frequencies of the cone aperture atomizer. The atomization performances of cone aperture and straight aperture atomizers are also measured. The experimental results show the existence of the pumping effect of the dynamic tapered angle. This effect is usually observed in industries that require low dispersion and micro- and nanoscale grain sizes, such as during production of high-pressure nozzles and inhalation therapy. Strategies to minimize the pumping effect of the dynamic cone angle or improve future designs are important concerns. This research proposes that dynamic micro-tapered angle is an important cause of atomization of the atomizer with micro cone apertures.
基金support of the National Natural Science Foundation of China(Grant No.59971008).
文摘Transmission electron microscopy (TEM) observations were carried out for examining the precipitation behavior in a Cu-Sn-Ni-Zn-P lead frame material. TEM observations revealed that the precipitate is hexagonal Ni5P2 and the orientation relationship between the Cu matrix and Ni$Pi precipitate is (111)fcc//(0001)hcp, [101]fcc//[1120]hcp, where the suffix fcc denotes the Cu matrix and hep denotes the hexagonal Ni5P2 precipitate. The Ni5P2 precipitate is ovoidal in shape at the beginning of aging at lower temperature. By prolonging the aging time or increasing the aging temperature, Ni5P2 precipitate grows and shows a rod-like shape. The Ni added Cu based lead frame material has a comparative mechanical properties with that of TAMAC15 which has been developed and used in electrical industry.
基金the Spanish Ministerio de Economia y Competitividad(Nos.CTQ2017-82137P and CTQ2014-56058P).
文摘In the present work,a wavelength-selected plasma imaging analysis system is presented and used to track photons emitted from single-trapped nanoparticles in air at atmospheric pressure.The isolated nanoentities were atomized and excited into plasma state using single nanosecond laser pulses.The use of appropriate wavelength filters alongside time-optimized acquisition settings enabled the detection of molecular and atomic emissions in the plasma.The photon detection efficiency of the imaging line resulted in a signal>400 times larger than the simultaneously-acquired dispersive spectroscopy data.The increase in sensitivity outlined the evolution of diverse physicochemical processes at the single particle scale which included heat and momentum transfer from the plasma into the particle as wells as chemical reactions.The imaging detection of excited fragments evidenced different diffusion kinetics and time frames for atoms and molecules and their influence upon both the spectroscopic emission readout and fabrication processes using the plasma as a reactor.Moreover,the origin of molecular species,whether naturally-occurring or derived from a chemical reaction in the plasma,could also be studied on the basis of compositional gradients found on the images.Limits of detection for the inspected species ranged from tens to hundreds attograms,thus leading to an exceptional sensing principle for single nanoentities that may impact several areas of science and technology.
文摘Indirect additive manufacturing(AM)methods have recently attracted attention from researchers thanks to their great potential for cheap,straightforward,and small-scale production of metallic components.Atomic diffusion additive manufacturing(ADAM),a variant of indirect AM methods,is a layer-wise indirect AM process recently developed based on fused deposition modeling and metal injection molding.However,there is still limited knowledge of the process conditions and material properties fabricated through this process,where sintering plays a crucial role in the final consolidation of parts.Therefore,this research,for the first time,systematically investigates the impact of various sintering conditions on the shrinkage,relative density,microstructure,and hardness of the 17-4PH ADAM samples.For this reason,as-washed samples were sintered under different time-temperature combinations.The sample density was evaluated using Archimedes,computed tomography,and image analysis methods.The outcomes revealed that sintering variables significantly impacted the density of brown 17-4PH Stainless Steel samples.The results indicated more than 99% relative densities,higher than the value reported by Markforged Inc.(~96%).Based on parallel porosities observed in the computed tomography results,it can be suggested that by modifying the infill pattern during printing,it would be possible to increase the final relative density.The microhardness of the sintered samples in this study was higher than that of the standard sample provided by Markforged Inc.Sintering at 1330℃ for 4 h increased the density of the printed sample without compromising its mechanical properties.According to X-ray diffraction analysis,the standard sample provided by Markforged Inc.and“1330℃—4 h”one had similar stable phases,although copper-rich intermetallics were more abundant in the microstructure of reference samples.This study is expected to facilitate the adoption of indirect metal AM methods by different sectors,thanks to the high achievable relative densities reported here.
文摘We have introduced a 5-parameter Morse function to simulate the pairwise poten-tial and studied the adsorption and diffusion of hydrogen atoms on the Ni low indexsurfaces by pairwise method and satistying results were obtained. In this letter,we further investigate the properties of the adsorption and diffusion of hydrogen at-oms on the Ni (115) stepped surface by the same method and the optimumparameters.