A diamond-like carbon(DLC) film was deposited on YT14 substrate using magnetron sputtering(MS). The surface morphologies, roughness and bonding spectra of obtained film were characterized using scanning electron m...A diamond-like carbon(DLC) film was deposited on YT14 substrate using magnetron sputtering(MS). The surface morphologies, roughness and bonding spectra of obtained film were characterized using scanning electron microscopy(SEM), atomic force microscopy(AFM), and X-ray photoelectron spectroscopy(XPS), respectively, and its mechanical property and bonding strength were measured using a nanoindentation and scratch tester, respectively. The results show that the C-enriched DLC film exhibits a denser microstructure and smoother surface with lower surface roughness of 21.8 nm. The ratio of C sp2 at 284.4 e V that corresponds to the diamond(111) and the C sp3 at 285.3 e V that corresponds to the diamond(220) plane for the as-received film is 0.36: 0.64, showing that the C sp3 has the high content. The hardness and Young's modulus of DLC film by nanoindentation are 8.534 41 and 142.158 1 GPa, respectively, and the corresponding bonding strength is 74.55 N by scratch test.展开更多
基金Funded by the Jiangsu Province Science and Technology Support Program(Industry)(No.BE2014818)
文摘A diamond-like carbon(DLC) film was deposited on YT14 substrate using magnetron sputtering(MS). The surface morphologies, roughness and bonding spectra of obtained film were characterized using scanning electron microscopy(SEM), atomic force microscopy(AFM), and X-ray photoelectron spectroscopy(XPS), respectively, and its mechanical property and bonding strength were measured using a nanoindentation and scratch tester, respectively. The results show that the C-enriched DLC film exhibits a denser microstructure and smoother surface with lower surface roughness of 21.8 nm. The ratio of C sp2 at 284.4 e V that corresponds to the diamond(111) and the C sp3 at 285.3 e V that corresponds to the diamond(220) plane for the as-received film is 0.36: 0.64, showing that the C sp3 has the high content. The hardness and Young's modulus of DLC film by nanoindentation are 8.534 41 and 142.158 1 GPa, respectively, and the corresponding bonding strength is 74.55 N by scratch test.