The microstructure of asphalt is investigated by atomic force microscopy (AFM). In order to analyze the impacts of asphalt types on microstructures, two neat asphalts with different penetration grades (50# and 70#...The microstructure of asphalt is investigated by atomic force microscopy (AFM). In order to analyze the impacts of asphalt types on microstructures, two neat asphalts with different penetration grades (50# and 70#) and one styrene-butadiene-styrene (SBS) modified asphalt are chosen. The influence of short-term aging is also studied. Based on the knowledge of asphalt's microproperties, the relationship between microstructures and healing property is analyzed. The results indicate that the microstructures of three asphalts are quite different and the effects of aging on the surface characteristics for different asphalts are also different. It is proposed that the bee structure is a type of wax crystal and it has a close relationship with the "bridge-healing" mechanism. The findings may reveal the formation mechanism of microstructure and the healing property for asphalts.展开更多
By using tapping mode atomic force microscopy(TMAFM), a polymer layer was found on the enamel surface after the exposure to xanthan gum solutions. The layer thickness is closely related to the exposure time and the co...By using tapping mode atomic force microscopy(TMAFM), a polymer layer was found on the enamel surface after the exposure to xanthan gum solutions. The layer thickness is closely related to the exposure time and the concentration of xanthan gum solution. The thickness data were evaluated by a Kruskal-Wallis test and Box-Whisker Plot at a 95% confidence level(p<0.05), and a statistically significant difference among the thickness data groups was demonstrated. After the exposure to 1000, 400, 100 mg/L xanthan gum solutions, the mean of layer thickness at the adsorption equilibrium is in the ranges of 103.5_122.06, 82.4_88.94 and 45.27_55.55 nm, respectively. This phenomenon suggests that the viscosity modifying agents in the beverage might be adsorbed on the enamel surface during consumption, which may form a barrier that can protect the enamel from being attacked by acid and therefore reduce dental erosion.展开更多
Nanomanipulation of DNA molecules or other biomolecules to form artificial patterns or structures at nanometer scale has potential applications in the construction of molecular devices in future industries. It may als...Nanomanipulation of DNA molecules or other biomolecules to form artificial patterns or structures at nanometer scale has potential applications in the construction of molecular devices in future industries. It may also lead to new insights into the interesting properties and behavior of this fantastic nature-selected molecule at the sin- gle-molecular level. Here we present a special method based on the combination of macroscopic “molecular comb- ing” and microscopic “molecular cutting” to manipulate DNA molecules and form complex patterns at nanometer scale on solid surfaces. A possible strategy for ordered DNA sequencing based on this nanomanipulation technique has also been proposed.展开更多
The probe effect on the apparent image of biological atomic force microscopy was explored in this study, and the potential of AFM in conformational study of gene related biological processes was illustrated by the spe...The probe effect on the apparent image of biological atomic force microscopy was explored in this study, and the potential of AFM in conformational study of gene related biological processes was illustrated by the specific nanostructural information of a new antitumor drug binding to DNA.展开更多
While atomic force microscopy (AFM) has been increasingly applied to life science, artifactual measurements or images can occur during nanoscale analyses of cell components and biomolecules. Tip-sample convolution eff...While atomic force microscopy (AFM) has been increasingly applied to life science, artifactual measurements or images can occur during nanoscale analyses of cell components and biomolecules. Tip-sample convolution effect is the most common mechanism responsible for causing artifacts. Some deconvolution-based methods or algorithms have been developed to reconstruct the specimen surface or the tip geometry. Double-tip or double-probe effect can also induce artifactual images by a different mechanism from that of convolution effect. However, an objective method for identifying the double-tip/probe-induced artifactual images is still absent. To fill this important gap, we made use of our expertise of AFM to analyze artifactual double-tip images of cell structures and biomolecules, such as linear DNA, during AFM scanning and imaging. Mathematical models were then generated to elucidate the artifactual double-tip effects and images develop during AFM imaging of cell structures and biomolecules. Based on these models, computational formulas were created to measure and identify potential double-tip AFM images. Such formulas proved to be useful for identification of double-tip images of cell structures and DNA molecules. The present studies provide a useful methodology to evaluate double-tip effects and images. Our results can serve as a foundation to design computer-based automatic detection of double-tip AFM images during nanoscale measuring and imaging of biomolecules and even non-biological materials or structures, and then personal experience is not needed any longer to evaluate artifactual images induced by the double-tip/probe effect.展开更多
The aim of the investigation was to develop the use of topographic and nano-adhesion atomic force microscopy(AFM) studies as a means of monitoring the coalescence of latex particles within films produced from a pharma...The aim of the investigation was to develop the use of topographic and nano-adhesion atomic force microscopy(AFM) studies as a means of monitoring the coalescence of latex particles within films produced from a pharmaceutically relevant aqueous dispersion(Eudragit~?NE30 D). Films were prepared via spin coating and analysed using AFM, initially via tapping mode for topographic assessment followed by force-distance measurements which allowed assessment of site-specific adhesion. The results showed that colloidal particles were clearly observed topographically in freshly prepared samples, with coalescence detected on curing via the disappearance of discernible surface features and a decrease in roughness indices. The effects of temperature and humidity on film curing were also studied, with the former having the most pronounced effect. AFM force measurements showed that the variation in adhesive force reduced with increasing curing time, suggesting a novel method of quantifying the rate of film formation upon curing. It was concluded that the AFM methods outlined in this study may be used as a means of qualitatively and quantitatively monitoring the curing of pharmaceutical films as a function of time and other variables, thereby facilitating rational design of curing protocols.展开更多
综述了基于原子力显微镜的红外光谱(Atomic force microscopy-based infrared spectroscopy,AFM-IR)的特点,测量和检测原理及其技术优势。AFM-IR是能在纳米尺度对不同材料进行表征的新兴技术,该技术可以以远低于常规光学衍射极限的分辨...综述了基于原子力显微镜的红外光谱(Atomic force microscopy-based infrared spectroscopy,AFM-IR)的特点,测量和检测原理及其技术优势。AFM-IR是能在纳米尺度对不同材料进行表征的新兴技术,该技术可以以远低于常规光学衍射极限的分辨率检测材料的化学成分,同时提供不同组分的分布图谱。AFM-IR的原理是利用原子力显微镜(AFM)悬臂梁的振动检测样本因吸收红外辐射脉冲产生的热膨胀,因此AFM-IR在继承了AFM的纳米级分辨率的基础上结合了红外光谱的化学分析能力,克服了二者原有的缺点并实现了优势互补。这项新技术在过去十多年备受关注并获得了长足的发展,因其操作简便、系统稳定、样品制备要求相对较低,以及与红外光谱直接相关而无需数学建模或额外数据后续处理,已被广泛用于材料科学、生命科学等诸多领域。展开更多
As a new technology, Atomil Force Microscopy (AFM) is being used in the research of microscopic structure on coal surface in recent years. By this technology, we can observe the nanoscale pore and crack shape of coa...As a new technology, Atomil Force Microscopy (AFM) is being used in the research of microscopic structure on coal surface in recent years. By this technology, we can observe the nanoscale pore and crack shape of coal surface, and measure some structural parameters. Different metamorphic grades produce different feature of surface microscopic structure of coal. This paper analyzes the surface microscopic structure of different metamorphic grade coal by AFM. The results show that the coal surface microstructure has a trend from rough to smooth with the increasing of metamorphic grade. The low rank coals contain large or medium pores and the high rank coals contain micro pores. The values of surface morphology characteristic parameters (Sq and Sa) nonlinearly decrease with the increasing coal rank. That is, the coal surface becomes smoother during coalification.展开更多
The characterization of sulfonated polyetherketone (SPEK-C) films was investigated by using positronannihilation lifetime spectroscopy (PALS) and atomic force microscopy (AFM). It was found that free volume radiusand ...The characterization of sulfonated polyetherketone (SPEK-C) films was investigated by using positronannihilation lifetime spectroscopy (PALS) and atomic force microscopy (AFM). It was found that free volume radiusand intensity depend on the variation of sulfonation degree and solvent evaporation time of the films. Pore size anddistribution determined from PALS and AFM measurements showed reasonable agreement.展开更多
Proteins play a vital role in different biological processes by forming complexes through precise folding with exclusive inter-and intra-molecular interactions.Understanding the structural and regulatory mechanisms un...Proteins play a vital role in different biological processes by forming complexes through precise folding with exclusive inter-and intra-molecular interactions.Understanding the structural and regulatory mechanisms underlying protein complex formation provides insights into biophysical processes.Furthermore,the principle of protein assembly gives guidelines for new biomimetic materials with potential appli-cations in medicine,energy,and nanotechnology.Atomic force microscopy(AFM)is a powerful tool for investigating protein assembly and interactions across spatial scales(single molecules to cells)and temporal scales(milliseconds to days).It has significantly contributed to understanding nanoscale architectures,inter-and intra-molecular interactions,and regulatory elements that determine protein structures,assemblies,and functions.This review describes recent advancements in elucidating protein assemblies with in situ AFM.We discuss the structures,diffusions,interac-tions,and assembly dynamics of proteins captured by conventional and high-speed AFM in near-native environments and recent AFM developments in the multimodal high-resolution imaging,bimodal imaging,live cell imaging,and machine-learning-enhanced data analysis.These approaches show the significance of broadening the horizons of AFM and enable unprecedented explorations of protein assembly for biomaterial design and biomedical research.展开更多
In order to compare the spark plasma sintedng (SPS) process plus hot isostatic press (HIP) with vacuum sintedng plus HIP, an investigation was carried out on the topography, microstructure and gain size distributi...In order to compare the spark plasma sintedng (SPS) process plus hot isostatic press (HIP) with vacuum sintedng plus HIP, an investigation was carried out on the topography, microstructure and gain size distribution of nanocrystalline WC-10Co composite powder and the sintered specimens prepared by SPS plus HIP and by vacuum sintering plus HIP by means of atomic force microscopy (AFM). The mechanical properties of the sintered specimens were also investigated. It is very easy to find cobalt lakes in the specimen prepared by vacuum sintering plus HIP process. But the microstructure of the specimen prepared by SPS plus HIP is more homogeneous, and the grain size is smaller than that prepared by vacuum sintering plus HIP. The WC-10Co ultrafine cemented carbide consolidated by SPS plus HIP can reach a relative density of 99.4%, and the transverse rupture strength (TRS) is higher than 3540 MPa, the Rockwell A hardness (HRA) is higher than 92.8, the average grain size is smaller than 300 nm, and the WC-10Co ultrafine cemented carbide with excellent properties is achieved. The specimen prepared by SPS with HIP has better properties and microstructure than that prepared by vacuum sintering with HIP.展开更多
The detailed understanding of various underlying processes at liquid/solid interfaces requires the development of interface-sensitive and high-resolution experimental techniques with atomic precision.In this perspecti...The detailed understanding of various underlying processes at liquid/solid interfaces requires the development of interface-sensitive and high-resolution experimental techniques with atomic precision.In this perspective,we review the recent advances in studying the liquid/solid interfaces at atomic level by electrochemical scanning tunneling microscope(EC-STM),non-contact atomic force microscopy(NC-AFM),and surface-sensitive vibrational spectroscopies.Different from the ultrahigh vacuum and cryogenic experiments,these techniques are all operated in situ under ambient condition,making the measurements close to the native state of the liquid/solid interface.In the end,we present some perspectives on emerging techniques,which can defeat the limitation of existing imaging and spectroscopic methods in the characterization of liquid/solid interfaces.展开更多
原子力显微镜(atomic force microscopy,AFM)在微纳米尺度力学测量领域有着广泛应用,其微悬臂梁探针的弹性常数是直接影响测量结果准确性的关键因素之一。弯曲法是标定微悬臂梁弹性常数的一类重要方法,基于弯曲标定原理提出了一种新的...原子力显微镜(atomic force microscopy,AFM)在微纳米尺度力学测量领域有着广泛应用,其微悬臂梁探针的弹性常数是直接影响测量结果准确性的关键因素之一。弯曲法是标定微悬臂梁弹性常数的一类重要方法,基于弯曲标定原理提出了一种新的技术实现方案,并研制了相应的标定系统。借助精密运动定位台使微悬臂梁接触超精密天平并产生弯曲,分别以天平和光杠杆机构同步测得接触力和梁的弯曲量,再根据胡克定律直接算得弹性常数。利用所研制的系统对多种型号的微悬臂梁进行了标定,实验结果表明该系统具有良好的准确性和重复性,测量相对标准差小于5%。展开更多
为解决原子力显微镜(Atomic Force Microscope,AFM)系统更换探针后光路调整复杂耗时、精度不足的问题,本文首次提出通过精密控制探针与探针夹装配位置来实现更换的探针相对AFM系统原光路位置的一致,进而实现免去AFM系统换针后调整光路...为解决原子力显微镜(Atomic Force Microscope,AFM)系统更换探针后光路调整复杂耗时、精度不足的问题,本文首次提出通过精密控制探针与探针夹装配位置来实现更换的探针相对AFM系统原光路位置的一致,进而实现免去AFM系统换针后调整光路步骤。该系统的光路一致性组件采用光束偏转法对探针位置与偏转进行放大与监测,并使用高精度位移与角度调节平台进行探针相对于探针夹的方位调整。通过实物搭建对探针一致性效果进行了验证,并对紫外光(Ultraviolet,UV)胶水固化过程导致探针位置偏移影响;探针不同偏移量时产生的探测器噪音对AFM系统成像质量影响进行了系统分析。实验结果表明:经由该系统装配的探针平均位置精度接近1.1μm;并且在AFM系统中更换一致性探针仅需8 s。该系统实现了高精度且质量稳定的探针一致性装配,极大地简化了AFM系统重新校准光路的操作步骤,其与自动换针装置配合可有效提升工业计量型AFM的操作与测量性能。展开更多
基金The Ph.D.Programs Foundation of Ministry of Education of China(No.20120092110053)
文摘The microstructure of asphalt is investigated by atomic force microscopy (AFM). In order to analyze the impacts of asphalt types on microstructures, two neat asphalts with different penetration grades (50# and 70#) and one styrene-butadiene-styrene (SBS) modified asphalt are chosen. The influence of short-term aging is also studied. Based on the knowledge of asphalt's microproperties, the relationship between microstructures and healing property is analyzed. The results indicate that the microstructures of three asphalts are quite different and the effects of aging on the surface characteristics for different asphalts are also different. It is proposed that the bee structure is a type of wax crystal and it has a close relationship with the "bridge-healing" mechanism. The findings may reveal the formation mechanism of microstructure and the healing property for asphalts.
文摘By using tapping mode atomic force microscopy(TMAFM), a polymer layer was found on the enamel surface after the exposure to xanthan gum solutions. The layer thickness is closely related to the exposure time and the concentration of xanthan gum solution. The thickness data were evaluated by a Kruskal-Wallis test and Box-Whisker Plot at a 95% confidence level(p<0.05), and a statistically significant difference among the thickness data groups was demonstrated. After the exposure to 1000, 400, 100 mg/L xanthan gum solutions, the mean of layer thickness at the adsorption equilibrium is in the ranges of 103.5_122.06, 82.4_88.94 and 45.27_55.55 nm, respectively. This phenomenon suggests that the viscosity modifying agents in the beverage might be adsorbed on the enamel surface during consumption, which may form a barrier that can protect the enamel from being attacked by acid and therefore reduce dental erosion.
基金Supported by National Natural Science Foundation of China (NSFC) under grant No.10335070. Financial support from the Chinese Academy of Sciences and Shanghai Scientific and Technological Committee is also appreciated.
文摘Nanomanipulation of DNA molecules or other biomolecules to form artificial patterns or structures at nanometer scale has potential applications in the construction of molecular devices in future industries. It may also lead to new insights into the interesting properties and behavior of this fantastic nature-selected molecule at the sin- gle-molecular level. Here we present a special method based on the combination of macroscopic “molecular comb- ing” and microscopic “molecular cutting” to manipulate DNA molecules and form complex patterns at nanometer scale on solid surfaces. A possible strategy for ordered DNA sequencing based on this nanomanipulation technique has also been proposed.
基金The support from Visiting Scholar Foundation of Key Lab in University and Chinese Education Foundation for Excellent Young Teachers as well as the support from Jiangsu province (BJ 99011 and BK 2001401) is greatly appreciated.
文摘The probe effect on the apparent image of biological atomic force microscopy was explored in this study, and the potential of AFM in conformational study of gene related biological processes was illustrated by the specific nanostructural information of a new antitumor drug binding to DNA.
文摘While atomic force microscopy (AFM) has been increasingly applied to life science, artifactual measurements or images can occur during nanoscale analyses of cell components and biomolecules. Tip-sample convolution effect is the most common mechanism responsible for causing artifacts. Some deconvolution-based methods or algorithms have been developed to reconstruct the specimen surface or the tip geometry. Double-tip or double-probe effect can also induce artifactual images by a different mechanism from that of convolution effect. However, an objective method for identifying the double-tip/probe-induced artifactual images is still absent. To fill this important gap, we made use of our expertise of AFM to analyze artifactual double-tip images of cell structures and biomolecules, such as linear DNA, during AFM scanning and imaging. Mathematical models were then generated to elucidate the artifactual double-tip effects and images develop during AFM imaging of cell structures and biomolecules. Based on these models, computational formulas were created to measure and identify potential double-tip AFM images. Such formulas proved to be useful for identification of double-tip images of cell structures and DNA molecules. The present studies provide a useful methodology to evaluate double-tip effects and images. Our results can serve as a foundation to design computer-based automatic detection of double-tip AFM images during nanoscale measuring and imaging of biomolecules and even non-biological materials or structures, and then personal experience is not needed any longer to evaluate artifactual images induced by the double-tip/probe effect.
文摘The aim of the investigation was to develop the use of topographic and nano-adhesion atomic force microscopy(AFM) studies as a means of monitoring the coalescence of latex particles within films produced from a pharmaceutically relevant aqueous dispersion(Eudragit~?NE30 D). Films were prepared via spin coating and analysed using AFM, initially via tapping mode for topographic assessment followed by force-distance measurements which allowed assessment of site-specific adhesion. The results showed that colloidal particles were clearly observed topographically in freshly prepared samples, with coalescence detected on curing via the disappearance of discernible surface features and a decrease in roughness indices. The effects of temperature and humidity on film curing were also studied, with the former having the most pronounced effect. AFM force measurements showed that the variation in adhesive force reduced with increasing curing time, suggesting a novel method of quantifying the rate of film formation upon curing. It was concluded that the AFM methods outlined in this study may be used as a means of qualitatively and quantitatively monitoring the curing of pharmaceutical films as a function of time and other variables, thereby facilitating rational design of curing protocols.
文摘综述了基于原子力显微镜的红外光谱(Atomic force microscopy-based infrared spectroscopy,AFM-IR)的特点,测量和检测原理及其技术优势。AFM-IR是能在纳米尺度对不同材料进行表征的新兴技术,该技术可以以远低于常规光学衍射极限的分辨率检测材料的化学成分,同时提供不同组分的分布图谱。AFM-IR的原理是利用原子力显微镜(AFM)悬臂梁的振动检测样本因吸收红外辐射脉冲产生的热膨胀,因此AFM-IR在继承了AFM的纳米级分辨率的基础上结合了红外光谱的化学分析能力,克服了二者原有的缺点并实现了优势互补。这项新技术在过去十多年备受关注并获得了长足的发展,因其操作简便、系统稳定、样品制备要求相对较低,以及与红外光谱直接相关而无需数学建模或额外数据后续处理,已被广泛用于材料科学、生命科学等诸多领域。
基金Supported by the National Natural Science Foundation of China (41072153) the “Strategic Priority Research Program-Climate Change: Carbon Budget and Related Issues” of the Chinese Academy of Sciences (XDA05030100) the Foundation for University Key Teacher by Education Department of Henan Province (2009GGJS-038).
文摘As a new technology, Atomil Force Microscopy (AFM) is being used in the research of microscopic structure on coal surface in recent years. By this technology, we can observe the nanoscale pore and crack shape of coal surface, and measure some structural parameters. Different metamorphic grades produce different feature of surface microscopic structure of coal. This paper analyzes the surface microscopic structure of different metamorphic grade coal by AFM. The results show that the coal surface microstructure has a trend from rough to smooth with the increasing of metamorphic grade. The low rank coals contain large or medium pores and the high rank coals contain micro pores. The values of surface morphology characteristic parameters (Sq and Sa) nonlinearly decrease with the increasing coal rank. That is, the coal surface becomes smoother during coalification.
文摘The characterization of sulfonated polyetherketone (SPEK-C) films was investigated by using positronannihilation lifetime spectroscopy (PALS) and atomic force microscopy (AFM). It was found that free volume radiusand intensity depend on the variation of sulfonation degree and solvent evaporation time of the films. Pore size anddistribution determined from PALS and AFM measurements showed reasonable agreement.
基金National Natural Science Foundation of China,Grant/Award Numbers:32371525,T2221001,92353304,T2350011Strategic Priority Research Program of the Chinese Academy of Sciences,Grant/Award Number:XDB37020105+5 种基金U.S.Department of EnergyOffice of ScienceOffice of Basic Energy Sciences,Grant/Award Number:FWP 65357Pacific Northwest National LaboratoryEnergy Frontier Research CentersCenter for the Science of Synthesis Across Scales,Grant/Award Number:DE-SC0019288。
文摘Proteins play a vital role in different biological processes by forming complexes through precise folding with exclusive inter-and intra-molecular interactions.Understanding the structural and regulatory mechanisms underlying protein complex formation provides insights into biophysical processes.Furthermore,the principle of protein assembly gives guidelines for new biomimetic materials with potential appli-cations in medicine,energy,and nanotechnology.Atomic force microscopy(AFM)is a powerful tool for investigating protein assembly and interactions across spatial scales(single molecules to cells)and temporal scales(milliseconds to days).It has significantly contributed to understanding nanoscale architectures,inter-and intra-molecular interactions,and regulatory elements that determine protein structures,assemblies,and functions.This review describes recent advancements in elucidating protein assemblies with in situ AFM.We discuss the structures,diffusions,interac-tions,and assembly dynamics of proteins captured by conventional and high-speed AFM in near-native environments and recent AFM developments in the multimodal high-resolution imaging,bimodal imaging,live cell imaging,and machine-learning-enhanced data analysis.These approaches show the significance of broadening the horizons of AFM and enable unprecedented explorations of protein assembly for biomaterial design and biomedical research.
基金This work was financially supported by the Postdoctoral Science Foundation of China (No.2003034504),the Open Foundation ofState Key Laboratory of Advanced Technology for Materials Synthesis & Processing, Wuhan University of Technology (2004-2005)and the National High-Tech Research and Development Program of China (No.2002AA302504).
文摘In order to compare the spark plasma sintedng (SPS) process plus hot isostatic press (HIP) with vacuum sintedng plus HIP, an investigation was carried out on the topography, microstructure and gain size distribution of nanocrystalline WC-10Co composite powder and the sintered specimens prepared by SPS plus HIP and by vacuum sintering plus HIP by means of atomic force microscopy (AFM). The mechanical properties of the sintered specimens were also investigated. It is very easy to find cobalt lakes in the specimen prepared by vacuum sintering plus HIP process. But the microstructure of the specimen prepared by SPS plus HIP is more homogeneous, and the grain size is smaller than that prepared by vacuum sintering plus HIP. The WC-10Co ultrafine cemented carbide consolidated by SPS plus HIP can reach a relative density of 99.4%, and the transverse rupture strength (TRS) is higher than 3540 MPa, the Rockwell A hardness (HRA) is higher than 92.8, the average grain size is smaller than 300 nm, and the WC-10Co ultrafine cemented carbide with excellent properties is achieved. The specimen prepared by SPS with HIP has better properties and microstructure than that prepared by vacuum sintering with HIP.
文摘The detailed understanding of various underlying processes at liquid/solid interfaces requires the development of interface-sensitive and high-resolution experimental techniques with atomic precision.In this perspective,we review the recent advances in studying the liquid/solid interfaces at atomic level by electrochemical scanning tunneling microscope(EC-STM),non-contact atomic force microscopy(NC-AFM),and surface-sensitive vibrational spectroscopies.Different from the ultrahigh vacuum and cryogenic experiments,these techniques are all operated in situ under ambient condition,making the measurements close to the native state of the liquid/solid interface.In the end,we present some perspectives on emerging techniques,which can defeat the limitation of existing imaging and spectroscopic methods in the characterization of liquid/solid interfaces.
文摘原子力显微镜(atomic force microscopy,AFM)在微纳米尺度力学测量领域有着广泛应用,其微悬臂梁探针的弹性常数是直接影响测量结果准确性的关键因素之一。弯曲法是标定微悬臂梁弹性常数的一类重要方法,基于弯曲标定原理提出了一种新的技术实现方案,并研制了相应的标定系统。借助精密运动定位台使微悬臂梁接触超精密天平并产生弯曲,分别以天平和光杠杆机构同步测得接触力和梁的弯曲量,再根据胡克定律直接算得弹性常数。利用所研制的系统对多种型号的微悬臂梁进行了标定,实验结果表明该系统具有良好的准确性和重复性,测量相对标准差小于5%。
文摘为解决原子力显微镜(Atomic Force Microscope,AFM)系统更换探针后光路调整复杂耗时、精度不足的问题,本文首次提出通过精密控制探针与探针夹装配位置来实现更换的探针相对AFM系统原光路位置的一致,进而实现免去AFM系统换针后调整光路步骤。该系统的光路一致性组件采用光束偏转法对探针位置与偏转进行放大与监测,并使用高精度位移与角度调节平台进行探针相对于探针夹的方位调整。通过实物搭建对探针一致性效果进行了验证,并对紫外光(Ultraviolet,UV)胶水固化过程导致探针位置偏移影响;探针不同偏移量时产生的探测器噪音对AFM系统成像质量影响进行了系统分析。实验结果表明:经由该系统装配的探针平均位置精度接近1.1μm;并且在AFM系统中更换一致性探针仅需8 s。该系统实现了高精度且质量稳定的探针一致性装配,极大地简化了AFM系统重新校准光路的操作步骤,其与自动换针装置配合可有效提升工业计量型AFM的操作与测量性能。