期刊文献+
共找到171篇文章
< 1 2 9 >
每页显示 20 50 100
Atomic layer deposition in advanced display technologies:from photoluminescence to encapsulation
1
作者 Rong Chen Kun Cao +4 位作者 Yanwei Wen Fan Yang Jian Wang Xiao Liu Bin Shan 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第2期65-82,共18页
Driven by the growing demand for next-generation displays,the development of advanced luminescent materials with exceptional photoelectric properties is rapidly accelerating,with such materials including quantum dots ... Driven by the growing demand for next-generation displays,the development of advanced luminescent materials with exceptional photoelectric properties is rapidly accelerating,with such materials including quantum dots and phosphors,etc.Nevertheless,the primary challenge preventing the practical application of these luminescent materials lies in meeting the required durability standards.Atomic layer deposition(ALD)has,therefore,been employed to stabilize luminescent materials,and as a result,flexible display devices have been fabricated through material modification,surface and interface engineering,encapsulation,cross-scale manufacturing,and simulations.In addition,the appropriate equipment has been developed for both spatial ALD and fluidized ALD to satisfy the low-cost,high-efficiency,and high-reliability manufacturing requirements.This strategic approach establishes the groundwork for the development of ultra-stable luminescent materials,highly efficient light-emitting diodes(LEDs),and thin-film packaging.Ultimately,this significantly enhances their potential applicability in LED illumination and backlighted displays,marking a notable advancement in the display industry. 展开更多
关键词 atomic layer deposition DISPLAY LUMINESCENT ENCAPSULATION
下载PDF
Implementation of sub-100 nm vertical channel-all-around(CAA) thin-film transistor using thermal atomic layer deposited IGZO channel
2
作者 Yuting Chen Xinlv Duan +9 位作者 Xueli Ma Peng Yuan Zhengying Jiao Yongqing Shen Liguo Chai Qingjie Luan Jinjuan Xiang Di Geng Guilei Wang Chao Zhao 《Journal of Semiconductors》 EI CAS CSCD 2024年第7期40-44,共5页
In-Ga-Zn-O(IGZO) channel based thin-film transistors(TFT), which exhibit high on-off current ratio and relatively high mobility, has been widely researched due to its back end of line(BEOL)-compatible potential for th... In-Ga-Zn-O(IGZO) channel based thin-film transistors(TFT), which exhibit high on-off current ratio and relatively high mobility, has been widely researched due to its back end of line(BEOL)-compatible potential for the next generation dynamic random access memory(DRAM) application. In this work, thermal atomic layer deposition(TALD) indium gallium zinc oxide(IGZO) technology was explored. It was found that the atomic composition and the physical properties of the IGZO films can be modulated by changing the sub-cycles number during atomic layer deposition(ALD) process. In addition, thin-film transistors(TFTs) with vertical channel-all-around(CAA) structure were realized to explore the influence of different IGZO films as channel layers on the performance of transistors. Our research demonstrates that TALD is crucial for high density integration technology, and the proposed vertical IGZO CAA-TFT provides a feasible path to break through the technical problems for the continuous scale of electronic equipment. 展开更多
关键词 In-Ga-Zn-O(IGZO) thermal atomic layer deposition vertical channel thin-film transistor
下载PDF
Improved Efficiency and Stability of Organic Solar Cells by Interface Modification Using Atomic Layer Deposition of Ultrathin Aluminum Oxide
3
作者 Ai Lan Yiqun Li +8 位作者 Huiwen Zhu Jintao Zhu Hong Lu Hainam Do Yifan Lv Yonghua Chen Zhikuan Chen Fei Chen Wei Huang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期282-290,共9页
The interfacial contacts between the electron transporting layers(ETLs)and the photoactive layers are crucial to device performance and stability for OSCs with inverted architecture.Herein,atomic layer deposition(ALD)... The interfacial contacts between the electron transporting layers(ETLs)and the photoactive layers are crucial to device performance and stability for OSCs with inverted architecture.Herein,atomic layer deposition(ALD)fabricated ultrathin Al_(2)O_(3)layers are applied to modify the ETLs/active blends(PM6:BTP-BO-4F)interfaces of OSCs,thus improving device performance.The ALD-Al_(2)O_(3)thin layers on ZnO significantly improved its surface morphology,which led to the decreased work function of ZnO and reduced recombination losses in devices.The simultaneous increase in open-circuit voltage(V_(OC)),short-circuit current density(J_(SC))and fill factor(FF)were achieved for the OSCs incorporated with ALD-Al_(2)O_(3)interlayers of a certain thickness,which produced a maximum PCE of 16.61%.Moreover,the ALD-Al_(2)O_(3)interlayers had significantly enhanced device stability by suppressing degradation of the photoactive layers induced by the photocatalytic activity of ZnO and passivating surface defects of ZnO that may play the role of active sites for the adsorption of oxygen and moisture. 展开更多
关键词 atomic layer deposition interface modification organic solar cells STABILITY
下载PDF
Preparation of palladium-based catalyst by plasma-assisted atomic layer deposition and its applications in CO_(2) hydrogenation reduction
4
作者 唐守贤 田地 +4 位作者 李筝 王正铎 刘博文 程久珊 刘忠伟 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第6期31-39,共9页
Supported Pd catalyst is an important noble metal material in recent years due to its high catalytic performance in CO_(2)hydrogenation.A fluidized-bed plasma assisted atomic layer deposition(FP-ALD) process is report... Supported Pd catalyst is an important noble metal material in recent years due to its high catalytic performance in CO_(2)hydrogenation.A fluidized-bed plasma assisted atomic layer deposition(FP-ALD) process is reported to fabricate Pd nanoparticle catalyst over γ-Al_(2)O_(3)or Fe_(2)O_(3)/γ-Al_(2)O_(3)support,using palladium hexafluoroacetylacetonate as the Pd precursor and H_(2)plasma as counter-reactant.Scanning transmission electron microscopy exhibits that highdensity Pd nanoparticles are uniformly dispersed over Fe_(2)O_(3)/γ-Al_(2)O_(3)support with an average diameter of 4.4 nm.The deposited Pd-Fe_(2)O_(3)/γ-Al_(2)O_(3)shows excellent catalytic performance for CO_(2)hydrogenation in a dielectric barrier discharge reactor.Under a typical condition of H_(2)to CO_(2)ratio of 4 in the feed gas,the discharge power of 19.6 W,and gas hourly space velocity of10000 h^(-1),the conversion of CO_(2)is as high as 16.3% with CH_(3)OH and CH4selectivities of 26.5%and 3.9%,respectively. 展开更多
关键词 atomic layer deposition CO_(2)hydrogenation palladium based catalyst
下载PDF
Atomic layer deposition of thin films:from a chemistry perspective 被引量:3
5
作者 Jinxiong Li Gaoda Chai Xinwei Wang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第3期88-116,共29页
Atomic layer deposition(ALD)has become an indispensable thin-film technology in the contemporary microelectronics industry.The unique self-limited layer-by-layer growth feature of ALD has outstood this technology to d... Atomic layer deposition(ALD)has become an indispensable thin-film technology in the contemporary microelectronics industry.The unique self-limited layer-by-layer growth feature of ALD has outstood this technology to deposit highly uniform conformal pinhole-free thin films with angstrom-level thickness control,particularly on 3D topologies.Over the years,the ALD technology has enabled not only the successful downscaling of the microelectronic devices but also numerous novel 3D device structures.As ALD is essentially a variant of chemical vapor deposition,a comprehensive understanding of the involved chemistry is of crucial importance to further develop and utilize this technology.To this end,we,in this review,focus on the surface chemistry and precursor chemistry aspects of ALD.We first review the surface chemistry of the gas–solid ALD reactions and elaborately discuss the associated mechanisms for the film growth;then,we review the ALD precursor chemistry by comparatively discussing the precursors that have been commonly used in the ALD processes;and finally,we selectively present a few newly-emerged applications of ALD in microelectronics,followed by our perspective on the future of the ALD technology. 展开更多
关键词 atomic layer deposition surface reaction PRECURSOR chemical mechanism
下载PDF
Atomic layer deposition to heterostructures for application in gas sensors 被引量:3
6
作者 Hongyin Pan Lihao Zhou +3 位作者 Wei Zheng Xianghong Liu Jun Zhang Nicola Pinna 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第2期171-188,共18页
Atomic layer deposition(ALD) is a versatile technique to deposit metals and metal oxide sensing materials at the atomic scale to achieve improved sensor functions. This article reviews metals and metal oxide semicondu... Atomic layer deposition(ALD) is a versatile technique to deposit metals and metal oxide sensing materials at the atomic scale to achieve improved sensor functions. This article reviews metals and metal oxide semiconductor(MOS) heterostructures for gas sensing applications in which at least one of the preparation steps is carried out by ALD. In particular, three types of MOS-based heterostructures synthesized by ALD are discussed, including ALD of metal catalysts on MOS, ALD of metal oxides on MOS and MOS core–shell(C–S) heterostructures.The gas sensing performances of these heterostructures are carefully analyzed and discussed.Finally, the further developments required and the challenges faced by ALD for the synthesis of MOS gas sensing materials are discussed. 展开更多
关键词 atomic layer deposition metal oxides HETEROSTRUCTURES gas sensors
下载PDF
Atomic layer deposition for nanoscale oxide semiconductor thin film transistors:review and outlook 被引量:4
7
作者 Hye-Mi Kim Dong-Gyu Kim +2 位作者 Yoon-Seo Kim Minseok Kim Jin-Seong Park 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第1期153-180,共28页
Since the first report of amorphous In–Ga–Zn–O based thin film transistors,interest in oxide semiconductors has grown.They offer high mobility,low off-current,low process temperature,and wide flexibility for compos... Since the first report of amorphous In–Ga–Zn–O based thin film transistors,interest in oxide semiconductors has grown.They offer high mobility,low off-current,low process temperature,and wide flexibility for compositions and processes.Unfortunately,depositing oxide semiconductors using conventional processes like physical vapor deposition leads to problematic issues,especially for high-resolution displays and highly integrated memory devices.Conventional approaches have limited process flexibility and poor conformality on structured surfaces.Atomic layer deposition(ALD)is an advanced technique which can provide conformal,thickness-controlled,and high-quality thin film deposition.Accordingly,studies on ALD based oxide semiconductors have dramatically increased recently.Even so,the relationships between the film properties of ALD-oxide semiconductors and the main variables associated with deposition are still poorly understood,as are many issues related to applications.In this review,to introduce ALD-oxide semiconductors,we provide:(a)a brief summary of the history and importance of ALD-based oxide semiconductors in industry,(b)a discussion of the benefits of ALD for oxide semiconductor deposition(in-situ composition control in vertical distribution/vertical structure engineering/chemical reaction and film properties/insulator and interface engineering),and(c)an explanation of the challenging issues of scaling oxide semiconductors and ALD for industrial applications.This review provides valuable perspectives for researchers who have interest in semiconductor materials and electronic device applications,and the reasons ALD is important to applications of oxide semiconductors. 展开更多
关键词 atomic layer deposition(ALD) oxide semiconductor thin film transistor(TFT)
下载PDF
Atomic-scale engineering of advanced catalytic and energy materials via atomic layer deposition for eco-friendly vehicles 被引量:2
8
作者 Xiao Liu Yu Su Rong Chen 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第2期90-117,共28页
Zero-emission eco-friendly vehicles with partly or fully electric powertrains have exhibited rapidly increased demand for reducing the emissions of air pollutants and improving the energy efficiency. Advanced catalyti... Zero-emission eco-friendly vehicles with partly or fully electric powertrains have exhibited rapidly increased demand for reducing the emissions of air pollutants and improving the energy efficiency. Advanced catalytic and energy materials are essential as the significant portions in the key technologies of eco-friendly vehicles, such as the exhaust emission control system,power lithium ion battery and hydrogen fuel cell. Precise synthesis and surface modification of the functional materials and electrodes are required to satisfy the efficient surface and interface catalysis, as well as rapid electron/ion transport. Atomic layer deposition(ALD), an atomic and close-to-atomic scale manufacturing method, shows unique characteristics of precise thickness control, uniformity and conformality for film deposition, which has emerged as an important technique to design and engineer advanced catalytic and energy materials. This review has summarized recent process of ALD on the controllable preparation and modification of metal and oxide catalysts, as well as lithium ion battery and fuel cell electrodes. The enhanced catalytic and electrochemical performances are discussed with the unique nanostructures prepared by ALD. Recent works on ALD reactors for mass production are highlighted. The challenges involved in the research and development of ALD on the future practical applications are presented, including precursor and deposition process investigation, practical device performance evaluation, large-scale and efficient production, etc. 展开更多
关键词 atomic layer deposition eco-friendly vehicle exhaust gas catalysis lithium ion battery hydrogen fuel cell
下载PDF
MXene-based flexible pressure sensor with piezoresistive properties significantly enhanced by atomic layer infiltration 被引量:1
9
作者 Zilian Qi Tianwei Zhang +3 位作者 Xiao-Dong Zhang Qing Xu Kun Cao Rong Chen 《Nano Materials Science》 EI CAS CSCD 2023年第4期439-446,共8页
The flexible pressure sensor has been credited for leading performance including higher sensitivity,faster response/recovery,wider detection range and higher mechanical durability,thus driving the development of novel... The flexible pressure sensor has been credited for leading performance including higher sensitivity,faster response/recovery,wider detection range and higher mechanical durability,thus driving the development of novel sensing materials enabled by new processing technologies.Using atomic layer infiltration,Pt nanocrystals with dimensions on the order of a few nanometers can be infiltrated into the compressible lamellar structure of Ti3C2Tx MXene,allowing a modulation of its interlayer spacing,electrical conductivity and piezoresistive property.The flexible piezoresistive sensor is further developed from the Pt-infiltrated MXene on a paper substrate.It is demonstrated that Pt infiltration leads to a significant enhancement of the pressure-sensing performance of the sensor,including increase of sensitivity from 0.08 kPa^(-1)to 0.5 kPa^(-1),extension of detection limit from 5 kPa to 9 kPa,decrease of response time from 200 ms to 20 ms,and reduction of recovery time from 230 ms to 50 ms.The mechanical durability of the flexible sensor is also improved,with the piezoresistive performance stable over 1000 cycles of flexure fatigue.The atomic layer infiltration process offers new possibilities for the structure modification of MXene for advanced sensor applications. 展开更多
关键词 MXene atomic layer deposition Pt infiltration PIEZORESISTIVE Flexible pressure sensor
下载PDF
Material manufacturing from atomic layer 被引量:1
10
作者 Xinwei Wang Rong Chen Shuhui Sun 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第4期454-460,共7页
Atomic scale engineering of materials and interfaces has become increasingly important in material manufacturing.Atomic layer deposition(ALD)is a technology that can offer many unique properties to achieve atomic-scal... Atomic scale engineering of materials and interfaces has become increasingly important in material manufacturing.Atomic layer deposition(ALD)is a technology that can offer many unique properties to achieve atomic-scale material manufacturing controllability.Herein,we discuss this ALD technology for its applications,attributes,technology status and challenges.We envision that the ALD technology will continue making significant contributions to various industries and technologies in the coming years. 展开更多
关键词 atomic-scale manufacturing atomic layer deposition area selective deposition applications
下载PDF
Application of atomic layer deposition in fabricating high-efficiency electrocatalysts 被引量:11
11
作者 Huimin Yang Yao Chen Yong Qin 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第2期227-241,共15页
Electrocatalysis is a promising approach to clean energy conversion due to its high efficiency and low environmental pollution. Noble metal materials have been studied to show high activity toward electrocatalyltic re... Electrocatalysis is a promising approach to clean energy conversion due to its high efficiency and low environmental pollution. Noble metal materials have been studied to show high activity toward electrocatalyltic reactions, although such applications remain restricted by the high cost and poor durability of the noble metals. By precisely adjusting the catalyst composition, size, and structure, electrocatalysts with excellent performance can be obtained. Atomic layer deposition(ALD) is a technique used to produce ultrathin films and ultrafine nanoparticles at the atomic level. It possesses unique advantages for the controllable design and synthesis of electrocatalysts. Furthermore, the homogenous composition and structure of the electrocatalysts prepared by ALD favor the exploration of structure-reactivity relationships and catalytic mechanisms. In this review, the mechanism, characteristics, and advantages of ALD in fabricating nanostructures are introduced first. Subsequently, the problems associated with existing electrocatalysts and a series of recently developed ALD strategies to enhance the activity and durability of electrocatalysts are presented. For example, the deposition of ultrafine Pt nanoparticles to increase the utilization and activity of Pt, fabrication of core–shell, overcoat, nanotrap, and other novel structures to protect the noble-metal nanoparticles and enhance the catalyst stability. In addition, ALD developments in synthesizing non-noble metallic electrocatalysts are summarized and discussed. Finally, based on the current studies, an outlook for the ALD application in the design and synthesis of electrocatalysts is presented. 展开更多
关键词 atomic layer deposition ELECTROCATALYSIS PT Catalyst stability Metal-support interaction
下载PDF
Single atom catalyst by atomic layer deposition technique 被引量:13
12
作者 Niancai Cheng Xueliang(Andy) Sun 《Chinese Journal of Catalysis》 CSCD 北大核心 2017年第9期1508-1514,共7页
Noble single‐atom catalysts have rapidly been attracting attention due to their unique catalytic properties and maximized utilization.Atomic layer deposition(ALD)is an emerging powerful technique for large‐scale syn... Noble single‐atom catalysts have rapidly been attracting attention due to their unique catalytic properties and maximized utilization.Atomic layer deposition(ALD)is an emerging powerful technique for large‐scale synthesis of stable single atom.In this review,we summarize recent developments of single atom synthesized by ALD as well as explore future research direction and trends. 展开更多
关键词 Single‐atom atomic layer deposition CATALYSIS Noble catalyst MECHANISM
下载PDF
Atomic layer deposition: Catalytic preparation and modification technique for the next generation 被引量:5
13
作者 Hongbo Zhang Christopher L. Marshall 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第9期1311-1323,共13页
Atomic layer deposition(ALD)attracts great attention nowadays due to its ability for designing and modifying catalytic systems at the molecular level.There are several reported review papers published recently discuss... Atomic layer deposition(ALD)attracts great attention nowadays due to its ability for designing and modifying catalytic systems at the molecular level.There are several reported review papers published recently discussing this technique in catalysis.However,the mechanism on how the deposited materials improve the catalyst stability and tune the reaction selectivity is still unclear.Herein,catalytic systems created via ALD on stepwise preparation and/or modification under self-limiting reaction conditions are summarized.The effects of deposited materials in terms of electronic/geometry modification over the catalytic nanoparticles(NPs)are discussed.These effects explain the mechanism of the catalytic stability improvement and the selectivity modification.The unique properties of ALD for designing new catalytic systems are further investigated for building up photocatalytic reaction nanobowls,tandem catalyst and bi-active-component metallic catalytic systems. 展开更多
关键词 atomic layer deposition Catalyst modification Catalyst preparation Redox properties Terrace site Step site
下载PDF
Highly Enhanced Visible-Light-Driven Photoelectrochemical Performance of ZnO-Modified In_2S_3 Nanosheet Arrays by Atomic Layer Deposition 被引量:5
14
作者 Ming Li Xinglong Tu +6 位作者 Yunhui Wang Yanjie Su Jing Hu Baofang Cai Jing Lu Zhi Yang Yafei Zhang 《Nano-Micro Letters》 SCIE EI CAS 2018年第3期79-90,共12页
Photoanodes based on In_2S_3/ZnO heterojunction nanosheet arrays(NSAs) have been fabricated by atomic layer deposition of ZnO over In_2S_3 NSAs, which were in situ grown on fluorine-doped tin oxide glasses via a facil... Photoanodes based on In_2S_3/ZnO heterojunction nanosheet arrays(NSAs) have been fabricated by atomic layer deposition of ZnO over In_2S_3 NSAs, which were in situ grown on fluorine-doped tin oxide glasses via a facile solvothermal process. The as-prepared photoanodes show dramatically enhanced performance for photoelectrochemical(PEC) water splitting, compared to single semiconductor counterparts. The optical and PEC properties of In_2S_3/ZnO NSAs have been optimized by modulating the thickness of the Zn O overlayer. After pairing with ZnO, the NSAs exhibit a broadened absorption range and an increased light absorptance over a wide wavelength region of 250–850 nm. The optimized sample of In_2S_3/ZnO-50 NSAs shows a photocurrent density of 1.642 m A cm^(-2)(1.5 V vs. RHE) and an incident photonto-current efficiency of 27.64% at 380 nm(1.23 V vs.RHE), which are 70 and 116 times higher than those of the pristine In_2S_3 NSAs, respectively. A detailed energy band edge analysis reveals the type-II band alignment of the In_2S_3/ZnO heterojunction, which enables efficient separation and collection of photogenerated carriers,especially with the assistance of positive bias potential, and then results in the significantly increased PEC activity. 展开更多
关键词 In2S3/ZnO HETEROJUNCTION Nanosheet arrays atomic layer deposition PHOTOELECTROCHEMICAL Water splitting Energy band
下载PDF
Atomic layer deposition for quantum dots based devices 被引量:10
15
作者 Binze Zhou Mengjia Liu +2 位作者 Yanwei Wen Yun Li Rong Chen 《Opto-Electronic Advances》 2020年第9期1-14,共14页
Quantum dots(QDs)are promising candidates for the next-generation optical and electronic devices due to the outstanding photoluminance efficiency,tunable bandgap and facile solution synthesis.Nevertheless,the limited ... Quantum dots(QDs)are promising candidates for the next-generation optical and electronic devices due to the outstanding photoluminance efficiency,tunable bandgap and facile solution synthesis.Nevertheless,the limited optoelectronic performance and poor lifetime of QDs devices hinder their further applications.As a gas-phase surface treatment method,atomic layer deposition(ALD)has shown the potential in QDs surface modification and device construction owing to the atomic-level control and excellent uniformity/conformality.In this perspective,the attempts to utilize ALD techniques in QDs modification to improve the photoluminance efficiency,stability,carrier mobility,as well as interfacial carrier utilization are introduced.ALD proves to be successful in the photoluminance quantum yield(PLQY)enhancement due to the elimination of QDs surface dangling bonds and defects.The QDs stability and devices lifetime are improved greatly through the introduction of ALD barrier layers.Furthermore,the carrier transport is ameliorated efficiently by infilling interstitial spaces during ALD process.Attributed to the ultra-thin and dense coating on the interface,the improvement on optoelectronic performance is achieved.Finally,the challenges of ALD applications in QDs at present and several prospects including ALD process optimization,in-situ characterization and computational simulations are proposed. 展开更多
关键词 atomic layer deposition quantum dots surface passivation STABILITY carrier transport interface engineering
下载PDF
FeOx Coating on Pd/C Catalyst by Atomic Layer Deposition Enhances the Catalytic Activity in Dehydrogenation of Formic Acid
16
作者 李俊杰 路军岭 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2017年第3期319-324,I0002,共7页
Hydrogen generation from formic acid (FA) has received significant attention. The challenge is to obtain a highly active catalyst under mild conditions for practical applications. Here atomic layer deposition (ALD... Hydrogen generation from formic acid (FA) has received significant attention. The challenge is to obtain a highly active catalyst under mild conditions for practical applications. Here atomic layer deposition (ALD) of FeOx was performed to deposit an ultrathin oxide coating layer to a Pd/C catalyst, therein the FeOx coverage was precisely controlled by ALD cycles. Transmission electron microscopy and powder X-ray diffraction measurements suggest that the FeOx coating layer improved the thermal stability of Pd nanoparticles (NPs). X-ray photoelectron spectroscopy measurement showed that deposition of FeOx on the Pd NPs caused a positive shift of Pd3d binding energy. In the FA dehydrogenation reaction, the ultrathin FeOx layer on the Pd/C could considerably improve the catalytic activity, and Pd/C coated with 8 cycles of FeOx showed an optimized activity with turnover frequency being about 2 times higher than the uncoated one. shape as a function of the number of FeOx ALD The improved activities were in a volcanocycles, indicating the coverage of FeOx is critical for the optimized activity. In summary, simultaneous improvements of activity and thermal stability of Pd/C catalyst by ultra-thin FeOx overlayer suggest to be an effective way to design active catalysts for the FA dehydrogenation reaction. 展开更多
关键词 Formic acid Hydrogen generation atomic layer deposition FeOx coating Pd catalyst
下载PDF
Atomic layer deposition of TiO_(2) on carbon-nanotubes membrane for capacitive deionization removal of chromium from water 被引量:4
17
作者 Jianhua Feng Sen Xiong +1 位作者 Li Ren Yong Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第5期15-21,共7页
Chromium(Cr)is a common heavy metal that has severe impacts on the ecosystem and human health.Capacitive deionization(CDI)is an environment-friendly and energy-efficient electrochemical purification technology to remo... Chromium(Cr)is a common heavy metal that has severe impacts on the ecosystem and human health.Capacitive deionization(CDI)is an environment-friendly and energy-efficient electrochemical purification technology to remove Cr from polluted water.The performance of CDI systems relies primarily on the properties of electrodes.Carbon-nanotubes(CNTs)membranes are promising candidates in creating advanced CDI electrodes and processes.However,the low electrosorption capacity and high hydrophobicity of CNTs greatly impede their applications in water systems.In this study,we employ atomic layer deposition(ALD)to deposit TiO_(2) nanoparticulates on CNTs membranes for preparing electrodes with hydrophilicity.The TiO_(2)-deposited CNTs membranes display preferable electrosorption performance and reusability in CDI processes after only 20 ALD cycles deposition.The total Cr and Cr(VI)removal efficiencies are significantly improved to 92.1%and 93.3%,respectively.This work demonstrates that ALD is a highly controllable and simple method to produce advanced CDI electrodes,and broadens the application of metal oxide/carbon composites in the electrochemical processes. 展开更多
关键词 Carbon-nanotube membranes atomic layer deposition Capacitive deionization Chromium removal
下载PDF
Characteristics and properties of metal aluminum thin films prepared by electron cyclotron resonance plasma-assisted atomic layer deposition technology 被引量:4
18
作者 熊玉卿 李兴存 +6 位作者 陈强 雷雯雯 赵桥 桑利军 刘忠伟 王正铎 杨丽珍 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第7期559-565,共7页
Metal aluminum (A1) thin films are prepared by 2450 MHz electron cyclotron resonance plasma-assisted atomic layer deposition on glass and p-Si substrates using trimethylaluminum as the precursor and hydrogen as the ... Metal aluminum (A1) thin films are prepared by 2450 MHz electron cyclotron resonance plasma-assisted atomic layer deposition on glass and p-Si substrates using trimethylaluminum as the precursor and hydrogen as the reductive gas. We focus our attention on the plasma source for the thin-film preparation and annealing of the as-deposited films relative to the surface square resistivity. The square resistivity of as-deposited A1 films is greatly reduced after annealing and almost reaches the value of bulk metal. Through chemical and structural analysis, we conclude that the square resistivity is determined by neither the contaminant concentration nor the surface morphology, but by both the crystallinity and crystal size in this process. 展开更多
关键词 ALUMINUM plasma-assisted atomic layer deposition ANNEALING
下载PDF
Fabrication of Nanoscale Step Height Structure Using Atomic Layer Deposition Combined with Wet Etching 被引量:3
19
作者 WANG Chenying YANG Shuming +4 位作者 JING Weixuan REN Wei LIN Qijing ZHANG Yijun JIANG Zhuangde 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第1期91-97,共7页
The current techniques used for the fabrication of nanosteps are normally done by layer growth and then ion beam thinning. There are also extra films grown on the step surfaces in order to reduce the roughness. So the... The current techniques used for the fabrication of nanosteps are normally done by layer growth and then ion beam thinning. There are also extra films grown on the step surfaces in order to reduce the roughness. So the whole process is time consuming. In this paper, a nanoscale step height structure is fabricated by atomic layer deposition (ALD) and wet etching techniques. According to the traceable of the step height value, the fabrication process is controllable. Because ALD technology can grow a variety of materials, aluminum oxide (Al2O3) is used to fabricate the nanostep. There are three steps of Al2O3 in this structure including 8 nm, 18 nm and 44 inn. The thickness of Al2O3 film and the height of the step are measured by anellipsometer. The experimental results show that the thickness of Al2O3 film is consistent with the height of the step. The height of the step is measured by AFM. The measurement results show that the height is related to the number of cycles of ALD and the wet etching time. The bottom and the sidewall surface roughness are related to the wet etching time. The step height is calibrated by Physikaliseh-Technische Bundesanstalt (PTB) and the results were 7.5±1.5 nm, 15.5±2.0 nm and 41.8±2.1 nm, respectively. This research provides a method for the fabrication of step height at nanoscale and the nanostep fabricated is potential used for standard references. 展开更多
关键词 atomic layer deposition (ALD) wet etching step height
下载PDF
High-performance LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2) cathode by nanoscale lithium sulfide coating via atomic layer deposition 被引量:2
20
作者 Xin Wang Jiyu Cai +8 位作者 Yang Ren Mourad Benamara Xinwei Zhou Yan Li Zonghai Chen Hua Zhou Xianghui Xiao Yuzi Liu Xiangbo Meng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第6期531-540,I0015,共11页
The commercialization of nickel-rich LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)(NMC811) has been hindered by its continuous loss of practical capacity and reduction in average working voltage.To address these issues,surface modi... The commercialization of nickel-rich LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)(NMC811) has been hindered by its continuous loss of practical capacity and reduction in average working voltage.To address these issues,surface modification has been well-recognized as an effective strategy.Different from the coatings reported in literature to date,in this work,we for the first time report a sulfide coating,amorphous Li_(2)S via atomic layer deposition (ALD).Our study revealed that the conformal nano-Li_(2)S coating shows exceptional protection over the NMC811 cathodes,accounting for the dramatically boosted capacity retention from~11.6%to~71%and the evidently mitigated voltage reduction from 0.39 to 0.18 V after 500 charge–discharge cycles.In addition,the Li_(2)S coating remarkably improved the rate capability of the NMC811 cathode.Our investigation further revealed that all these beneficial effects of the ALD-deposited nano-Li_(2)S coating lie in the following aspects:(i) maintain the mechanical integrity of the NMC811 electrode:(ii) stabilize the NMC electrode/electrolyte interface:and (iii) suppress the irreversible phase transition of NMC structure.Particularly,this study also has revealed that the nano-Li_(2)S coating has played some unique role not associated with traditional non-sulfide coatings such as oxides.In this regard,we disclosed that the Li_(2)S layer has reacted with the released O_(2) from the NMC lattices,and thereby has dramatically mitigated electrolyte oxidation and electrode corrosion.Thus,this study is significant and has demonstrated that sulfides may be an important class of coating materials to tackle the issues of NMCs and other layered cathodes in lithium batteries. 展开更多
关键词 Nickel-rich cathodes atomic layer deposition Lithium sulfide Microcracking Phase transition Interfacial reactions
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部