For the laboratory astrophysics community, those spectroscopic modeling codes extensively used in astronomy, e.g. Chianti, AtomDB, Cloudy and Xstar, cannot be directly applied to analyzing laboratory measurements due ...For the laboratory astrophysics community, those spectroscopic modeling codes extensively used in astronomy, e.g. Chianti, AtomDB, Cloudy and Xstar, cannot be directly applied to analyzing laboratory measurements due to their discrepancies from astrophysical cases. For example, plasma from an electron beam ion trap has an electron energy distribution that follows a Gaussian profile, instead of a Maxwellian one. The laboratory miniature for a compact object produced by a laser-driven implo- sion shows a departure from equilibrium, that often occurs in celestial objects, so we setup a spectral analysis system for astrophysical and laboratory (SASAL) plasmas to act as a bridge between them, which benefits the laboratory astrophysical community.展开更多
A simple and robust technique is reported to offset lock a single semiconductor laser to the atom resonance line with a frequency difference easily adjustable from a few tens of megahertz up to tens of gigahertz. The ...A simple and robust technique is reported to offset lock a single semiconductor laser to the atom resonance line with a frequency difference easily adjustable from a few tens of megahertz up to tens of gigahertz. The proposed scheme makes use of the frequency modulation spectroscopy by modulating sidebands of a fiber electro-optic modulator output. The short-term performances of a frequency offset locked semiconductor laser are experimentally demonstrated with the Allan variance of around 3.9 × 10-11 at a 2 s integration time. This method may have many applications, such as in Raman optics for an atom interferometer.展开更多
Comparison of appropriate theoretically derived line ratios with observational data can yield estimates of a plasma's physical parameters, such as electron density or temperature. The usual practice in the calculatio...Comparison of appropriate theoretically derived line ratios with observational data can yield estimates of a plasma's physical parameters, such as electron density or temperature. The usual practice in the calculation of the line ratio is the assumption of excitation by electrons/protons followed by radiative decay. Furthermore, it is normal to use the so-called coronal approximation, i.e. one only considers ionization and recombination to and from the ground-state. A more accurate treatment is to include ionization/recombination to and from metastable levels. Here, we apply this to two lines from adjacent ionization stages, Mg IX 368A and Mg × 625A, which has been shown to be a very useful temperature diagnostic. At densities typical of coronal hole conditions, the difference between the electron temperature derived assuming the zero density limit compared with the electron density dependent ionization/recombination is small. This, however, is not the case for flares where the electron density is orders of magnitude larger. The derived temperature for the coronal hole at solar maximum is around 1.04MK compared to just below 0.82MK at solar minimum.展开更多
Spectra are fundamental observation data used for astronomical research,but understanding them strongly depends on theoretical models with many fundamental parameters from theoretical calculations.Different models giv...Spectra are fundamental observation data used for astronomical research,but understanding them strongly depends on theoretical models with many fundamental parameters from theoretical calculations.Different models give different insights for understanding a specific object.Hence,laboratory benchmarks for these theoretical models become necessary.An electron beam ion trap is an ideal facility for spectroscopic benchmarks due to its similar conditions of electron density and temperature compared to astrophysical plasmas in stellar coronae,supernova remnants and so on.In this paper,we will describe the performance of a small electron beam ion trap/source facility installed at National Astronomical Observatories,Chinese Academy of Sciences.We present some preliminary experimental results on X-ray emission,ion production,the ionization process of trapped ions as well as the effects of charge exchange on the ionization.展开更多
基金Supported by the National Natural Science Foundation of China
文摘For the laboratory astrophysics community, those spectroscopic modeling codes extensively used in astronomy, e.g. Chianti, AtomDB, Cloudy and Xstar, cannot be directly applied to analyzing laboratory measurements due to their discrepancies from astrophysical cases. For example, plasma from an electron beam ion trap has an electron energy distribution that follows a Gaussian profile, instead of a Maxwellian one. The laboratory miniature for a compact object produced by a laser-driven implo- sion shows a departure from equilibrium, that often occurs in celestial objects, so we setup a spectral analysis system for astrophysical and laboratory (SASAL) plasmas to act as a bridge between them, which benefits the laboratory astrophysical community.
基金supported by the National Natural Science Foundation of China(No.61473166)
文摘A simple and robust technique is reported to offset lock a single semiconductor laser to the atom resonance line with a frequency difference easily adjustable from a few tens of megahertz up to tens of gigahertz. The proposed scheme makes use of the frequency modulation spectroscopy by modulating sidebands of a fiber electro-optic modulator output. The short-term performances of a frequency offset locked semiconductor laser are experimentally demonstrated with the Allan variance of around 3.9 × 10-11 at a 2 s integration time. This method may have many applications, such as in Raman optics for an atom interferometer.
文摘Comparison of appropriate theoretically derived line ratios with observational data can yield estimates of a plasma's physical parameters, such as electron density or temperature. The usual practice in the calculation of the line ratio is the assumption of excitation by electrons/protons followed by radiative decay. Furthermore, it is normal to use the so-called coronal approximation, i.e. one only considers ionization and recombination to and from the ground-state. A more accurate treatment is to include ionization/recombination to and from metastable levels. Here, we apply this to two lines from adjacent ionization stages, Mg IX 368A and Mg × 625A, which has been shown to be a very useful temperature diagnostic. At densities typical of coronal hole conditions, the difference between the electron temperature derived assuming the zero density limit compared with the electron density dependent ionization/recombination is small. This, however, is not the case for flares where the electron density is orders of magnitude larger. The derived temperature for the coronal hole at solar maximum is around 1.04MK compared to just below 0.82MK at solar minimum.
基金supported by the National Key R&D Program of China(No.2017YFA0402401)the National Natural Science Foundation of China(Grant No.11522326)+1 种基金the National Basic Research Program of China(973 Program,Grant 2013CBA01503)support by the Science Challenge Project(No.TZ2016005)
文摘Spectra are fundamental observation data used for astronomical research,but understanding them strongly depends on theoretical models with many fundamental parameters from theoretical calculations.Different models give different insights for understanding a specific object.Hence,laboratory benchmarks for these theoretical models become necessary.An electron beam ion trap is an ideal facility for spectroscopic benchmarks due to its similar conditions of electron density and temperature compared to astrophysical plasmas in stellar coronae,supernova remnants and so on.In this paper,we will describe the performance of a small electron beam ion trap/source facility installed at National Astronomical Observatories,Chinese Academy of Sciences.We present some preliminary experimental results on X-ray emission,ion production,the ionization process of trapped ions as well as the effects of charge exchange on the ionization.